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ABSTRACT

Two feedback control systems are designed that employ
the adaptive critic architecture, which consists of two
neural networks, one of which (the critic) tunes the other.
The first application is a deadzone compensator, where it
is shown that the adaptive critic structure is a natural
consequence of the mathematical problem of inversion of
an unknown function. In this situation the adaptive critic
appears in the feedforward loop. The second application is
the supervisory loop adaptive critic, where it is shown that
the critic neural network requires additional dynamics that
effectively give it a memory capability.

1 INTRODUCTION

The uses of neural networks (NN) in open-loop
applications such as signal processing or system
identification are significantly different than their
applications in closed-loop feedback control applications.
In the latter situation, it is necessary to take into account
the interaction between the dynamics of the controlled
system and that of the NN weight tuning algorithms,
providing rigorous proofs of the boundedness of the
tracking error, suitable performance guarantees, and proofs
of the boundedness of all the NN weights. The literature
of NN in open-loop applications has been rich,
mathematically rigorous, and varied for years. By
contrast, only during the past few years have stability
proofs been given for neurocontrollers [4], [11], [16],
[17],[19],{20],[21],[23],[24],[25]. By now, techniques for
design and analysis of neurocontrollers are well
established, so that one may have confidence in the
performance of NN controllers when properly designed.

Most neurocontroller designs have relied on the
function approximation property of NN [6], [10]. It would
be desirable to use more advanced learning and intelligent
features of NN in controls design as suggested in [29]. A
particularly intriguing higher-level topology is the
adaptive critic [2]. In the adaptive critic architecture there
are two neural networks (NN), one of which (the critic)
evaluates system performance and tunes the other (the
action generating network), which in turn provides the
control input signal for the system being controlled.

Papers dealing with control using adaptive critic
neural nets are too numerous to mention. Most of these
papers have some discussion and simulation results and no
stability proofs. In this paper the adaptive critic
architecture in feedback control is rigorously examined
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using nonlinear stability proof techniques. Two
applications are given. In the problem of deadzone
compensation [7], [8], [22], [27] it is shown that the
adaptive critic structure is a natural consequence of the
mathematical problem of inversion of an unknown
nonlinear function [26]. In this situation the adaptive critic
appears in the feedforward loop. The second application
is the supervisory loop adaptive critic (2], where it is
shown that the critic neural network requires additional
dynamics that effectively give it a memory capability [3].
In both cases, the two NN composing the adaptive critic
can be viewed as the two layers of a single augmented NN.
The critic element is effectively the second layer, and the
action generating NN the first.

2 BACKGROUND ON NEURAL NETWORKS
One may describe a 2-layer NN mathematically as
y=Wo(V x+v,)
where V is a matrix of first layer weights, ¥ is a matrix of
second layer weights , and vp is a vector of first-layer
thresholds. The second-layer thresholds are included as
the first column of of the matrix W1 by augmenting the
vector activation function o(w) by 'l' in the first position.
Tuning of the weights W then includes tuning of the
second-layer thresholds too. One may similarly include
the first-layer thresholds as the first column of matrix ¥7
by augmenting vector x by '1' in the first position, so that
one can write alternatively
y=WTo(¥"x).
The main property of NN we are concerned with for
control and estimation purposes is the function
approximation property [6],[10]. Let f (x) be a smooth

function from K" —> R™. Then it can be shown that if
the activation functions are suitably selected, as long as x

is restricted to a compact set S € R", then for some
sufficiently large number of hidden-layer neurons L, there
exist weights and thresholds such one has

F()=WTo(VTx)+e(x).

The value of &‘(x) is called the neural network functional
approximation error. In fact, for any choice of a positive

number &), , one can find a neural network such that

g(x)<¢gy forall xe§.



If the first-layer weights are fixed, then the NN is
linear in the adjustable parameters W (LIP). It has been
shown that, if the first-layer weights ¥ are suitably fixed,
then the approximation property can be satisfied by
selecting only the output weights W for good

approximation. For this to occur, (¥ " x) must be a
basis:
Definition [24]: Let .S' be a compact simply connected set
of R” and let o(V"x) be integrable and bounded.
Then o(V " x) is said to provide a basis for C™ (S) if:

1. A constant function on S can be expressed as

(8) for finite L for some value of W.
2. The functional range of neural network (8) is

dense in C"(§) for countable L.

In this paper we select LIP NN, tuning only the output
weights W for good performance. It was shown by Barron

[1] that the neural network approximation error £(x) for
LIP NN is fundamentally bounded below by a term of the

order (1/L)*'". This does not limit the tracking

performance in our controllers because of the control
system structure selected.

3 FEEDFORWARD LOOP ADAPTIVE
CRITIC: DEADZONE COMPENSATION

Deadzone compensation [7),[8],[22},[27] relies on
designing a precompensator to ameliorate the deleterious
effects of deadzone by effectively providing a pre-inverse
of the deadzone. In this section it is shown that to invert
an unknown nonlinear function, a structure using two
neural nets can be used. One NN is in the actual
feedforward path and estimates an inverse of the deadzone,
while a second NN is on a higher level and tunes the first
NN; it effectively estimates the deadzone itself as a sort of
observer. The result is an adaptive critic architecture that
arises directly from the mathematical considerations
inherent in function inversion. In general, this proposed
adaptive critic scheme can be used for inverting any
continuous invertible function. Therefore it is a powerful
result for compensation of general actuator nonlinearities
in motion control systems.

3.1. Dynamics of Mechanical Motion
Systems with Deadzone

The dynamics of mechanical systems with no
vibratory modes can be written [15] as

M@§ + V,.(q,9q + G(@) + F(q,q) +7,=

where q(t)e R" is a vector describing position and

orientation and ty(t)e R" represents disturbances. The
dynamics satisfy some well known physical properties as a
consequence of the fact that they are a Lagrangian system.
These properties are important in control system design
and include the positive definiteness of M(q), the norm

boundedness of V,_(q,q), the skew symmetry of

M- 2V, , and the boundedness of the disturbance 14(t).

To design a motion controller that causes the
mechanical system to track a prescribed trajectory qut),
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define the tracking error by €(t) =q,(t)-q(t) and the
filtered tracking error by T = €&+ Ae, where A=A"T>0 is
a design parameter matrix. Common usage is to select A
diagonal with large positive entries.

Differentiating, it is seen that the robot dynamics are
expressed in terms of the filtered emror as
Mi=-V r+f(X)-t+7,, where the nonlinear
robot function is
f(x) = M()4, + V,,(q,9(q, + Ae) + G(q) + F(q,9)
Vector x contains all the time signals needed to compute
f(x), and may be defined for instance as

T
XE[eT e’ qr 4 qg] . It is noted that the function

f(x) contains all the potentially unknown functions.
The desired trajectory is assumed bounded so that

qq(t)
QG (1) <qg .,
dq(t)

with g a known scalar bound.

Let the input to the mechanical system have a
deadzone [7], [8] so that 7(2)= D(u), with u(t) the control
input. Fig. 3.1 shows a nonsymmetric deadzone
nonlinearity D(u) where u and 1 are scalars. In general, u
and T are vectors.

A mathematical model for the deadzone
characteristic of Fig. 3.1 is given by
g(u) <0, u<d
t=D(u) =40, -d <u<d,
h(u)>0, u=d,

It is assumed that functions h(u) and g(u) are smooth and
invertible continuous functions. These functions are very
general, so this describes a very general class of deadzone.
All of h(u), g(u), d,, and d. are assumed unknown, so that
compensation is difficult.

3.2. NN Deadzone Precompensator

To offset the deleterious effects of deadzone, one
may place a precompensator as illustrated in Fig. 3.3.
There, the desired function of the precompensator is to
cause the composite throughput from w to 1 to be unity. In

=D(ulk
h(u)

g(w)

Figure 3.1 Nonsymmetric deadzone nonlinearity.



order to accomplish this, it is necessary to generate the
pre-inverse of the deadzone. Techniques for adaptive
deadzone compensation are given in a series of papers
culminating in a book [22], [27]. Fuzzy and neural
techniques are given in [12],{14]. The rigorous neural net
compensation technique described herein is amplified in
[26].

By assumption, the function D(.) is right invertible,
therefore there exists a pre-inverse D™'(w), such that

DD (W) =w . (3.1)

D-i(w) 4
' hi(w)

t A |

gliw)

Figure 3.2 Deadzone inverse.

The function D'(w) is shown in Figure. 3.2.
The mathematical model for the function shown in
Fig. 3.2 is given by

g7'(w), w<0
D7'(w) =10, w=0
h'(w), w>0.

The deadzone inverse D'(w) can be expressed in
equivalent form as

D'(w)=w+wy (W),
which has a direct feedforward term plus a correction
term, the modified deadzone inverse wyy, given by

gl(w)-w, w<0
Wy (W) =140, w=0
h'(w)-w, w>0.

Function wy(w) is discontinuous at zero.

Based on the NN approximation property, one can
approximate the deadzone function by a NN so that

1=D(u)=W'o(V'u+v,)+e(u) (32
One can design a second NN for the approximation of the
modified inverse function given by

T T
Waw(W) =W o, (V, w+vy)+g,(w) (33)

In these equations g(u), g(w) are the NN reconstruction
error and W, W,, are ideal target weights. It is assumed
that the ideal weights are unknown but bounded such that
”W”F <Wy, "VV] “F <W,,,, with Wy, and W;, known
bounds.

The reconstruction errors are bounded on a compact

set by né‘" <&y, ”81” < &p; - The first-layer weights V,

M?
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V,, Vo, Vg are fixed, and they must be properly chosen for
the approximation property of the NN to be valid [26].

The ideal NN weights are unknown. The
approximations of the nonlinear deadzone and modified
deadzone inverse functions are given by

2=D(u)=Wo(Viu+v,), (3.4)

W = Wi, (Viw+v,,) . (3.5)
where tilde denotes the actual values of the weights
appearing in the two neural nets. If the weights are
suitably tuned, these values approximate the unknown
ideal weights.

Note that expressions (3.4) and (3.5) represent
respectively a NN approximation of the deadzone function

and of the modified deadzone inverse. Signal W is

used for the deadzone compensation, and T represents the
estimated value of signal T.

For deadzone compensation, select the control input
as

u=w+wy(w). (3.6)
Note we use two NN. The structure of the NN

deadzone estimator and deadzone precompensator are
shown in Fig. 3.3. The first NN, denoted NN1, has weights

W7 andis effectively a sort of 'observer dynamics'. The
second NN, denoted NN2, has weights W and is used as

i
a deadzone compensator; it effectively estimates the
deadzone pre-inverse. The requirement for such a two-NN
structure is a direct consequence of the expression (3.1),
and represents a technique for adaptively inverting any
nonlinear invertible functions in industrial motion device
actuators. Note that only the output of the NN2 is directly
affecting the input u, while NN1 is a kind of higher level
‘performance evaluator’, the upcoming proof shows that it
is used for tuning the NN2.

The next result shows the effectiveness of the
proposed NN structure, by providing an expression for the
composite throughput error of the compensator plus

deadzone. It shows that, as the estimatess W, W,
approach the actual neural network parameters W, W, the
NN precompensator effectively provides a preinverse for
the deadzone nonlinearity. It is shown in the next section
how to tune (3.2) and (3.3) so that tracking error is small,

and W and W, are close to W, W,.. Define the weight
estimation errors as

W=W-W, W, =W -W,

The proof of the next result [26] is important in that it
shows that two NN are needed in the inversion of

unknown functions, namely, one NN that estimates the
function and another that estimates the function inverse.

Theorem 3.1 (Throughput Error Using NN Deadzone
Compensation).

Given the NN deadzone compensator (3.5), (3.6),
and the NN observer (3.4), the throughput of the
compensator plus the deadzone is given by

rT=w- WTO"(VTu + vo)VTVI~’,.TO',- Viw+vy)

+ W'V Tu+v, Wiy, +d(t)



where the modeling mismatch term d(t) is given by
d@Q)=-WTo' W Tu+v, W W o,V w+v,)

-b(t)+e(u)
with b(t) defined in the proof.

The next result {26] gives us the upper bound of the
norm of d(t). It is an important result used in the stability
proof.

Lemma
The norm of the modeling mismatching term d(t) is
bounded on a compact set by

Jacol <[], +a, |, +a, W]

where a,, a,, a, a,, a5 are computable constants.

F+35,

3.3. Tuning the Adaptive Critic Deadzone
Compensator

In the previous section, specifically in the proof of
Theorem 3.1, it was shown that to estimate the inverse of
an unknown function one requires two NN, one of which
estimates the function and one of which estimates its
inverse. In this section it is shown how to tune or learn the
weights of the two NN in (3.4), (3.5) on-line so that the
tracking error is guaranteed small and all internal states are
bounded. It is assumed, of course, that the actuator output
7(t) is not measurable.

If f(x) is unknown, it can be estimated using adaptive
control techniques, or the neural network controller in

{19]. Let f (X) be an estimate for f(x). Since the main
purposed of this paper is to use NN to compensate for the
deadzone, to avoid distractions the estimate f(x) is fixed

at a known nominal value in this paper and will not be
adapted. This is common in robust control techniques [5].

The functional estimation error f(x) = f(x)- f (x) is

assumed to be bounded so that ”Ff“ < fy(x) for some

known bounding function fy,(x).

A robust compensation scheme for unknown terms in
f(x) is provided by selecting the tracking controller

w=f(x)+K,r~v. 3.7
The feedback gain matrix K>0 is often selected diagonal
and v(t) is a robustifying term to be selected for
disturbance rejection. Deadzone compensation is provided
using

U=W+ Wy =W+ Wo,(VTw+v,). (338)

The multiloop control structure implied by this
T
scheme is shown in Fig. 3.3, where q=[qT qT] ,

q,= [da da]T, g=[eTéT]r. The controller has a
proportional-derivative (PD) tracking loop with gains
Kyr=K,e+K,Ae, where the deadzone effect is
ameliorated by the NN feedforward compensator. The
estimate £ (x) is computed by an inner nonlinear control
loop.

P In order to design a NN system such that the tracking

error r(t) is bounded and all internal states are stable, one
must examine the closed-loop error dynamics

Mi=-V,r-K,r
+W o'V Tu+v W Wio,(VIw+vy,)
W' WV Tu+v W Wy —d(E) + f +7,+v
The next theorem provides algorithms for tuning the

NN weights for the deadzone precompensator with
guaranteed closed-loop stability.

LI

of Nonlinear
Function

NN Deadzone
Precompensator

Mechanical

v

System

Figure 3.3 Tracking controller with NN deadzone compensation.
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Theorem 3.2 (Tuning of NN adaptive deadzone
compensator).

Select the tracking control law (3.7), plus the deadzone
compensator (3.8). Choose the robustifying signal as

v(t) = (£ (x)w)ﬁ :

where the f,,(x) and T, are bounds on functional
estimation error and disturbance respectively. Let the
estimated NN weights be provided by the NN tuning
algorithm

A

W==So'(VTu+v W Wro,(Vw+vy)r’

- kIS"’"W
W, = To, (V'w + Voi)rTWTG'(VTu +vo) V'
— K, The|[W; -k, T W] W, ’

with any constant matrices S=S™0, T=T"™>0, and k;, k,>0
small scalar design parameters. Then the filtered tracking

error r(t) and NN weight estimates W, W, are UUB.
Moreover, the tracking error may be kept as small as
desired by increasing the gains K,. In fact, an effective

bound on the tracking error is given by

2
lkl(WM +51—] +C+a;
Il= ‘
K

¥ min

Proof: The proof relies on selecting the Lyapunov
function candidate

V= erMr + ltr[WTS"W]+ ltr[i’v\/‘-T'l"l\’ﬁi ]
2 2 2

and demonstrating that V' is negative outside a certain
compact set [26]. This proof technique is by now standard
in neural net control, but it is complicated here by the
appearance of two NN.
n

The mutual dependence between NN1 and NN2
results in coupled tuning law equations. This mathematical
result followed from (3.1) which dictates the fact that the
information stored in NN1 and NN2 are dependent on
each other. Examining the form of the first terms of the
tuning laws and having in mind the backpropagation
algorithm [28], it is evident that the proposed NN
compensator with two NN’s can be viewed as a single NN
structure with two layers of tunable weights. In fact, NN1
can be interpreted as the second layer of this NN and NN2
as its first layer. This structure amounts to an adaptive
critic architecture with a higher-level 'observer’ NN tuning
a lower order NN which generates the actual command
signals.

4 SUPERVISORY LOOP ADAPTIVE CRITIC

In the previous section it was shown that the
mathematical problem of inverting an unknown function
leads to an adaptive critic structure with two NN. In fact,
the critic NN and the action generating NN can be
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considered as the second and first layers of a single NN
with two tunable layers. In this section it is shown that an
adaptive critic having a similar structure can be placed in
the outer feedback loops to improve the performance of
closed-loop systems. In this situation, the critic NN needs
some additional internal dynamics that give it a memory
capability. Details on this work are provided in [3].

4.1. Dynamics of an mn-th order MIMO .
system
Consider an mn-th order multi-input and multi-output
system given by the Brunovsky form

X =X,

xn—l = xn

X, = g(x) +u(®)+d()
Y =X

with state x = [xl XyeerX, ]T , control input #(¢), output
¥(t), d(t) adisturbance with a known upper bound b, ,
and g(x):R" - R™ smooth functions.  Many

physical systems, such as robotic systems, can be
represented in this- form. It is assumed that the

nonlinearity “g(x) in the system and the external

disturbances d(¢) are unknown to the controller.

Let there be prescribed a desired trajectory and its
derivatives

x,(8) = [xd Xy x:(in_l) .

The desired trajectory is assumed bounded so that
Il < g5

with ¢ g a known scalar bound.

Define the tracking error as e(t) = x(¢) —x,(?),
and the filtered tracking error 7(¢) € R™ as

r)y=e"(t)+ A, e )+ + Ae(t).
In matrix form one may write

r@)=[A" 1]-e),
where e (¢),...,e" (t) are the derivative values of
the error e(t), and A,,...,4,, are constant values
selected so that |s" + /1”_15"'2 -t /11[ is Hurwitz.

Thus, e(t) > O exponentially as #(t) = 0.
Using these equations the dynamics can be written in
terms of the filtered error as
F=gle,xy ™) +u(t) +d(),

where g(e, x;"‘l)

) is a nonlinear function of error vector

e and the (n-1)th derivative of the trajectory X, .



4.2. NN Compensation of Unknown
Nonlinearity
According to the approximation properties of NN,

the continuous nonlinear function gf(e, xg"_l)) can be
represented as
-1 T
g(e,xfi" ))=W2 o(x,)+&(x,), 4.1)

where the NN reconstruction error £(x,) is bounded on a
compact set by a known constant £, . The ideal NN

weights /¥, that approximate g(-) are unknown.
Let the NN functional estimate for the continuous

(n-1)

nonlinear function g(e,x," " ) be given by a NN as

d
£e,x{ ) =W o(x,),

where W2 are the current weights estimating 1, .

Select now the control input given by

u(t) = -K,r—w, o (x,) +v(1), (42)
where the control gain matrix is K, = K. >0 and v(¢)

is a robustifying vector that will be used to offset the NN
functional reconstruction error £(x) and disturbances

d(t). One can now rewrite the closed-loop dynamics as
F==Kr+ W o(x,)+e(x,) +d(t) + v©),

with the weight estimation error W, =W >~ W,.

4.3. Adaptive Critic Feedback Controller
(ACFC)

The adaptive critic architecture is described in [2],[29].

The tracking error 7(f) can be viewed as the real-valued
instantaneous utility function of the plant performance.

When r(t) is small, system performance is good. The
NN (4.1) is termed the action generating NN and is
subsequently called NN2. It is now desired to tune the
action generating NN in such a fashion that the tracking
error r(?) is guaranteed to be small and the control u(?) is
bounded.

To accomplish this using an adaptive critic
architecture, introduce a second critic NN, here denoted
NN1, that manufactures a critic signal R according to

R=W-a(r)+p,

5T . .
where W," are the current weight values of the critic NN.
The input to the critic is the signal r(t) which contains
information on the performance of the system. The critic

. . 5T
signal R must be used to tune the weights W, of the
action generating NN.

Signal p is an auxiliary term which will be
detailed later. Its structure is determined by the
requirements of the stability proof, and is a key feature in
ensuring closed-loop stability with bounded NN weights.

Fig. 4.1 shows the architecture of the proposed
ACFC controller, depicting the overall adaptive critic
scheme whose details are subsequently derived. In the
ACFC, the performance evaluation loop measures the
system performance for the current system states by
determining the instantaneous utility r(). This
information is provided to the critic NNI1 which then
supplies the learning signal R() to tune the action
generating NN2. Then, the action generating NN2
generates the counter-signal £(.) necessary to overcome
the nonlinearities which the performance loop cannot deal
with.

It is assumed that the ideal weights of both NN

r I
Performance

Fig. 4.1 ACFC Control Scheme

luator

x{t)
Unknown

v

Action Generating NN

Plant

|

d(t)

Fig 1: ACFC control scheme
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are bounded by known positive values so that
Wil < W Wl <y

4.4. ACFC Algorithm Dynamics and
Tuning

The next theorem is our main result and shows how
to adjust the weights of both NN to guarantee closed-loop
stability.

Theorem 4.1 (Tuning of Adaptive Critic Feedback
Controller).

Let the control action #(Z) be provided by (4.2) and the
robustifying term be given by

Vo' ()W, R+r
Vo' )R +1]
with k, > b, . Let the critic signal be provided by

v(ty=-k

z

R=Wlo(x)+p

with W,TO'(xl) the output of a critic NN and 0 being
an auxiliary adaptive term. Let the tuning for the critic
and action generating NNs be

Wl =-o(x,)R" -—Wl
W, =To(x,)-[r + Vo' (=) WR) ~TW,

with T =T7 > 0. Finally, let the auxiliary term p be
dynamically defined by

AT

p=W [20'(x1) + a'(xl)VlTer]

Then the errors 7, W], Wz are Uniformly Ultimately
Bounded (UUB). Moreover, the performance measure
7(¢) can be made arbitrarily small by increasing the fixed

control gains K,. In fact, an effective bound for the
filtered tracking error is given by
2

max

2
W=7

Ymin
Proof: [3] n
Note that the signal p(?) is the output of an integrator.
This means that the critic NN2 has additional dynamics
that effectively give it a memory capability. This form is
required by the mathematical formulation of the problem if
one goes through the details of the proof.
It is very interesting to note the relation between

the critic NN1, which has weights W, and the action
generating NN2, which has weights W, . Though the two
NN are used as distinct and separate networks, in the
tuning algorithms they are coupled together. In fact, the

first terms of the tuning algorithms are continuous-time
versions of backpropagation [28] (note the Jacobian

appearing in the update for Wz)- Having this in mind, it
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appears that the critic NN is effectively performing as the
second layer of a single augmented NN with two layers of
adjustable weights, which contains the action generating
NN as layer number one. The philosophical ramifications
of this are still under study.
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