
896 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

Guest Editorial
Special Issue on Adaptive Dynamic Programming
and Reinforcement Learning in Feedback Control

W E are extremely pleased to present this special issue of
the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS, PART B. The importance of adaptive dynamic
programming (ADP) to feedback control engineers is that it
affords a methodology for learning optimal control actions
online in real time based on system performance without nec-
essarily knowing the system dynamics. When such knowledge
is required in ADP, it may be of low fidelity.

In feedback control engineering, various types of adaptive
controllers provide implementation strategies that employ on-
line observations of system performance to determine reg-
ulation controllers that drive the system to the equilibrium
state, or tracking controllers that cause the system to follow
prescribed trajectories. Certain techniques have been developed
for online controller tuning without knowing the system dy-
namics. However, the control engineer is often constrained in
the choice of performance measure or cost employed for the
optimization. For example, inverse optimal adaptive controllers
exist that optimize some derived performance measures that
are reasonable though not of the control engineer’s choosing.
Indirect optimal adaptive controllers have been developed that
require high-fidelity identification of the system dynamics.

It is becoming more and more clear that ADP techniques,
on the other hand, do allow the design of optimal controllers
online in real time in terms of a (freely) prescribed perfor-
mance measure. The key lies effectively in solving Bellman’s
optimality condition forward in time through repeated iterations
that involve: 1) computing the cost or value of using a current
control, then 2) based on that value performing a control policy
update, or control improvement. This can be viewed as a type
of “structured” reinforcement learning comprising two com-
ponents, a critic agent and a policy-update agent. The former
evaluates currently instantiated control (via procedures called
policy iteration or value iteration), and the latter improves con-
troller design based on the latest evaluation. Typically, to allow
practical implementation, neural networks are used in these
respective agents (fuzzy logic systems are also possible) for
value function approximation in the one case and control policy
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approximation in the other. In the linear-system quadratic-cost-
function case, the critic neural network is quadratic in the
system state, and the neural net weights are exactly the entries
of the Riccati equation solution matrix.

ADP has two important roles for the control engineer, specif-
ically as follows. Riccati equation design has shown itself the
backbone of modern control systems theory for linear quadratic
control, but solution of the corresponding Riccati equation
requires full knowledge of the system dynamics. It is also done
a priori offline. ADP, on the other hand, allows solution of this
Riccati equation online without (full) knowledge of the system
dynamics. Arguably more important, ADP extends Riccati-
equation-like design methods to nonlinear systems by using
neural networks, of paradigms that are known to be universal
function approximators.

Many of the practitioners in ADP over the years are rep-
resented in this special issue, which is broadly divided into
three sections: Theoretical Foundations, Theory/Applications,
and Applications. We are privileged to have a foreword written
by Paul Werbos, the founder of ADP. A lead-in paper by
George Lendaris sets into perspective historical, recent, and
perhaps future developments in ADP.
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Adaptive Feedback Control by Constrained Approximate Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ferrari, J. E. Steck, and R. Chandramohan 982

Applications

Adaptive Critic Learning Techniques for Engine Torque and Air–Fuel Ratio Control . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Liu, H. Javaherian, O. Kovalenko, and T. Huang 988

Control of Nonaffine Nonlinear Discrete-Time Systems Using Reinforcement-Learning-Based Linearly Parameterized

Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Yang, J. B. Vance, and S. Jagannathan 994

Comparison of Adaptive Critic-Based and Classical Wide-Area Controllers for Power Systems . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder 1002

Direct Heuristic Dynamic Programming for Damping Oscillations in a Large Power System . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Lu, J. Si, and X. Xie 1008

Improved Adaptive–Reinforcement Learning Control for Morphing Unmanned Air Vehicles . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Valasek, J. Doebbler, M. D. Tandale, and A. J. Meade 1014

REGULAR ISSUE PAPERS

Improving Iris Recognition Performance Using Segmentation, Quality Enhancement, Match Score Fusion, and Indexing.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Vatsa, R. Singh, and A. Noore 1021

Instruction-Matrix-Based Genetic Programming . . . . . . . . . . . . . . . . G. Li, J. F. Wang, K. H. Lee, and K.-S. Leung 1036

Adaptive Lyapunov-Based Control of a Robot and Mass–Spring System Undergoing an Impact Collision . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Dupree, C.-H. Liang, G. Hu, and W. E. Dixon 1050

A Multifaceted Perspective at Data Analysis: A Study in Collaborative Intelligent Agents . . . . W. Pedrycz and P. Rai 1062

Global Synchronization Control of General Delayed Discrete-Time Networks With Stochastic Coupling and

Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Liang, Z. Wang, Y. Liu, and X. Liu 1073

Stability Analysis of Swarms With General Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Li 1084

Uncertainty Modeling of Improved Fuzzy Functions With Evolutionary Systems . . . A. Celikyilmaz and I. B. Turksen 1098

Nonlinear Dimensionality Reduction of Data Lying on the Multicluster Manifold . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Meng, Y. Leung, T. Fung, and Z. Xu 1111

A Novel Gaze Estimation System With One Calibration Point . . . . . . . . . . . . . . . . . . A. Villanueva and R. Cabeza 1123

Estimating Object Proper Motion Using Optical Flow, Kinematics, and Depth Information . . . . . . . . . . . . . . . . . . .
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