Training Strategies for Critic and Action Neural Networks
in Dual Heuristic Programming Method

George G. Lendaris'and Christian Paintz?
1.Professor, Portland State University, lendaris@sysc.pdx.edu
2.Graduate Student, Electrical Engineering, Portland State University
PO Box 751, Portland, OR 97207

Abstract

This paper discusses strategies for and details of train-
ing procedures for the Dual Heuristic Programming
(DHP) methoology, defined in [6]. This and other approx-
imate dynamic programming approaches (HDP, DHP,
GDHP) have been discussed in some detail in 2], [4], [S],
all being members of the Adaptive Critic Design (ACD)
family. The example application used is the inverted pen-
dulum problem, as defined in {1]. This "plant” has been
successfully controlled using DHP, as reported in [4]. The
main recent reference on training procedures for ACDs is
[2]. The present paper suggests and investigates several
alternative procedures and compares their performance
with respect to convergence speed and quality of resulting
controller design. A promising modification is to intro-
duce a real copy of the criticNN (criticNN#2) for making
the “desired output” calculations, and very importantly,
this crificNN#2 is trained differently than is criticNN#1.
The idea is to provide the “desired outputs” from a stable
platform during an epoch while adapting the criticNN#1.
Then at the end of the epoch, criticNN#2 is made identical
to the then-current adapted state of criticNN#1, and a new
epoch starts. In this way, both the criticNN#1 and the
actionNN can be simultaneously trained on-line during
each epoch, with a faster overall convergence than the
older approach. Further, the measures used herein suggest
that a “better” controller design (the actionNN) results.

1. Dual Heuristic Programming (DHP)

DHP is a neural network approach to solving the Bell-
man equation [6], [3]. The idea is to maximize a specified

(secondary) utility function J(¢), where J(¢) is defined as:
o ,
J@w = D vkue+r ()
k=0

The term y kisa discountfactor (0 <y< 1),and U(#)is
the primary utility function, which must be defined by the
user for the specific application context. In this paper, y is
assumed to be 1. In this case, Equation (1) is equivalent to
J() = U +J(+ 1) (2)

A schematic diagram of important components of the

0-7803-4122-8/97 $10.00©1997 IEEE 12

DHP method is shown in Figurel.

AMt+D
R .I/maer action (t model&-“ld/maxrl—)' critic |->(
_____ it

Figure 1: Schematic Diagram of important
components of DHP process.

The equations and techniques described in this paper
are based on a discrete plant; the usual method of dis-
cretizing continuous models of plants is used. For DHP, at
least two neural nets are needed, one for the actionNN
functioning as the controller, and one for the criticNN
used to train the actionNN. A third NN must be trained to
copy the plant if an analytical description (model) of the
plant is not available.

R(t) [dim: n] is the state of the plant at time t. The con-
trol signal u(t) [dim: a] is generated by the actionNN in
response to the input R(t). The signal u(t) is then asserted
to the plant. As a result of this, the plant changes its state
to R(t+1). The neural nets are updated using {u(t), R(t),
R(t+1)}in the equations described in Section 3. The crit-
icNN is needed to adapt the actionNN to the plant (model)
and to the utility function. The (primary) utility function
U(R(), u(t)) expresses the objective of the control appli-
cation, a potential example being: "balance the pole
upright and save energy by keeping the control vector's
amplitude small".

It was discovered useful to insert the *1/maxr modules

to scale the n-dimensional state space R™ to [-1,+1]"

2. Equations to update the neural nets

The underpinnings of the DHP method are the equa-
tions for training the NNs. Therefore, it is important to
understand how the two NN are updated.

Equations to update the action network weights:
The weights in the actionNN are updated with the ob-

jective of maximizing J(¢). For the NN structures defined
in Section 5, the dimension of the control signal u(t)

isa = Iand a basic Backpropagation algorithm is used
(no embellishments), wherein the actionNN’s weight-ad-

justment increment is calculated via:

Aw, (1) = lcoefs _FT]U) 3)
where —-——-_J() = i 9 Jtye u, (1)
ORISR TH) ('k
an aua(t)J O = VO D
ang finally,
Tt D - Zm(t 1)-5;‘1(—,)&(“1) 4
Abbreviation: a
0 @D —~J(+1) = A(@+1) &)

A(t + I)is approximated by the critic, in response to the in-
put R(t+1).

9 g
Ou (t) s
tions of the plant, if they are available, or by backpropaga-
tion through a third neural net that has been previously
trained to copy the plant.

Desired output for the critic

To train the criticNN, whose output is A, a value has to
be|calculated for the role of "desired output”, here called

Al
Recalling Equations (1) and (5), and making use of Equa-
tion (2), we write

by (0 = aR X0
this resolves to

o . 7
A O = 3R (t)U(t) Z(a (t)J(t) aR()" (‘)) 7

R _(t+ 1) can be calculated from analytical equa-

=) = 5= (U +J@+1)) (6)

6R (t)

s
n
Z:(aRk(HJ)“(De aR() Ryle+ 1))

+

k=1{j=1
d
R (1)
functlon U(t) with respect to Rs(t) .
A typical form for utility functions is as follows:

b, d,
U@ = Z(aiORi'(t)J +Z((:jouj1 (t)J,
J

i

a
)) 2
Z (6Rk(t+ e De 6uj(t)qk(t+ Do g (t)uj(t))}

—__U(t) isthe (total) derivative of the primary utility

o*l

with constant a., b., ¢. and d..
i J J

The partial derivative u (1) is calculated by back-

6R () "
propagation through the acttonNN, and

713

0 .) o
+ P
————Ja R G+ 1) (¢+ 1) is approximated by the critic itself as
response to R(t+1), i.e, is kk(t +1).

For training the criticNN, the "error" components are

calculated as follows: e = (k;(t) -)».s(t))2 (8)

3. Strategies to update the neural nets

This section discusses procedures to use the neural net
update equations given in the previous section. First, we
take a closer look at the convergence process. In the
present notation, A(R) is the mapping performed by the

criticNN, A° is the desired output for the criticNN ["cal-
culated" by using the criticNN’s output in response to
R(t+1)], and A™(R) is the "solution" (that we don't know)
of the Bellman equation and is the target for the other two
A’s. AMR) is a function of the state R and doesn't change
for a time invariant plant. Since we update the criticNN,

AR) and A° (which is calculated using the updated crit-

icNN) change over time; A°(R) is supposed to converge
to A*(R), and A(R) is adjusted in order to converge to

A°R). Le , AR)Y» A°(Ry» AMR. One can imagine

this as a tracking problem, where A tracks A°. The better
the critiec(NN "solves" the Bellman equation
[ie.: ARY» AMR)] the better the actionNN will
approximate an optimal controller.

Equation (7) for X; (#) is our principal focus here. [As
an aside, if we substitute Xs(t) (i.e., without the super-

script) in the left side of Equation (7), the criticNN is con-
sidered ‘converged’ when this new equation holds true for
all s and all subsequent t’s (t can be thought of as an index
in the sequence of states).]

For convenience of discussion, we paraphrase Equation
(7) as follows:

a
A2 (0) = [~Utilit]+ D" ([~Utility] « [~Action])
i<
n‘
+ 3" (~Critic(t+1)] o [~Plant])
K=

n a
+ Z Z ([~Critic(t+1)] o [~Plant] o [~Action])
k=1lj=1

In a neural network implementation, the [~Action]
terms are calculated via the actionNN, and the
[~Critic(t+1)] terms are calculated via the criticNN.,
Various strategies could be used to "solve" (iterate) Equa-
tion (9). Several are discussed here.

Strategy 1. "Straight" application of the equation.

Strategy 2. Basic two-stage process:

i) Hold the actionNN parameters constant for a speci-
fied number N of computation cycles, while adjust-
ing parameters in the criticNN.

ii) Then, hold the criticNN parameters constant for a
specified number M of computation cycles, while
adjusting the actionNN parameters. Return to 1).

NOTE: For the purposes of this paper, we let N=M, and use
the familiar term "epoch" as a name for this set of cycles.

Strategy 3. Modified two-stage process (asin 2., however,
first stage is substantially modified):
i) We noted earlier that the task of the crizicNN [which

performs A(R)] is to leamn A°. For the present strategy, we
temporarily suspend adjustments to the process that calcu-

lates A° to give the process that calculates A a chance to
accomplish its adaptation. To do this, we create a new copy
of the criticNN; the original is called criticNN#1 and the
copy is called critiecNN#2. [NOTE: This is different from
the "copy" in the cited references; their "copy” is for con-
venience rather than substance.] In the present case, we
hold criticNN#2’s parameters constant during the epoch;
we use this (non-adapted) criticNN#2 to calculate A° and

use these values of A° to train criticNN#1. As in 2., the ac-
tionNN parameters are held constant during this epoch. At
the end of this epoch, the weights of criticNN#2 are set
equal to those of criticNN#1.

ii) Same as for 2. above.

Strategy 4. Single-stage process, based on suspended ad-
aptation of criticNN#2.

We maintain the notion of an epoch as in 2. and 3..
However, in this strategy, BOTH the actionNN and the
criticNN#1 are adjusted during each computational cycle.
As before, criticNN#2 is not adapted during the epoch; its
weights are set equal to those of criticNN#1 at the end of
the epoch. The next epoch starts the same process over.

Algorithms for the above strategies:

Strategies 1. & 4. are single-stage processes. Strategies 2.
and 3. are 2-stage processes. The 2-stage processes are
(here) said to comprise a sequence of "flip/flop" epochs. In
the "flip" epoch, only the criticNN is updated; in the "flop"
epoch, only the actionNN is updated (on-line mode). The
variations in Strategies 2. and 3. occur in the flip epoch; the
flop epoch process is the same for both. The flip and flop
epochs are here equal in length.

Flop epoch algorithm (adapts the actionNN in on-line
mode):

1. Scale R(t) and apply it to the actionNN, obtain u(t),

2. Apply u(t) to the plant and obtain R(t+1);

3. Scale R(t+1) and apply it to the criticNN (both #1 and #2
are identical during this epoch), obtain A(t+1);

4. Calculate/execute weight changes for actionNN per Sec-
tion 3; 5. If t<epoch, increment t and go to 1;

6. Go to flip epoch.

714

Strategy 1. Single-stage, concurrent training of
actionNN and criticNN.

. Scale R(t) and apply it to the actionNN, obtain u(t);

. Apply u(t) to the plant and obtain R(t+1);

. Scale R(t+1), apply it to the criticNN, obtain A(t+1);

. Calculate desired output A° (t) for criticNN;

. Calculate/execute weight changes for actionNN;

. Scale R(t) and apply it to critic;

. Calculate/execute weight changes for criticNN;

. Increment t and go to 1.

00 ~J O WV H WK

Strategy 2a. Basic flip/flop strategy (a):
On-line train criticNN during flip epoch /
on-line train actionNN during flop epoch.

. Scale R(t) and apply it to the actionNN, obtain u(t);
. Apply u(t) to the plant and obtain R(t-+1);

. Scale R(t+1), apply it to the criticNN, obtain A(t+1);
. Calculate desired output A° (t) for criticNN;

. Scale R(t) and apply it to criticNN,;

. Calculate/execute weight changes for criticNN,

. If t<epoch, increment t and go to 1;

. Go to flop epoch

0 ~IOnbs W —

Strategy 2b. Basic flip/flop strategy (b):
Batch train criticNN during flip epoch/
on-line train actionNN during flop epoch.
1.,2.,3.,4. & 5. are same as in Strategy 2a. The follow-
ing are different:
6. Calculate and accumulate criticNN weight changes in
a weight store matrix Aw;
7. If t<epoch, increment t and goto 1;
8. Execute weight changes stored in Aw for criticNN,;
9. Go to flop epoch

Strategy 3a. Modified flip/flop strategy (a):
On-line train criticNN#1 with
suspended adaptation of criticNN#2.
1. Scale R(t) and apply it to the actionNN, obtain u(t);
2. Apply u(t) to the plant and obtain R(t+1),
3. Scale R(t+1), apply it to criticNN#2, obtain A(t+1),
4. Calculate desired output A° (t) for criticNN#1,
5. Scale R(t) and apply it to criticNN#1;
6. Calculate/execute weight changes for criticNN#1;
7. If t<epoch, increment t and go to 1;
8. Set criticNN#2=criticNN# 1,
9. Go to flop epoch.
Strategy 3b. Meodified flip/flop strategy (b):
Batch train criticNN#1 with
suspended adaptation of criticNN#2.

This entry is included for completeness. Batch training
here gives same results as 2b.

Strategy 4. Single-stage.

On-line train actionNN and criticNN#1
with suspended adaptation of criticNN#2.

4a. Use criticNN#2 to update both,
actionNN and criticNN#1.
1. Scale R(t) and apply it to actionNN, obtain u(t);
2. Apply u(t) to the plant and obtain R(t+1);
3. Scale R(t+1),apply it to criticNN#2, obtain A(t+1),
4. Calculate desired output A° (t) for criticNN#1,
5. Calculate/execute weight changes for actionNN per
Section 3;
6. Scale R(t) and apply it to criticNN#1;
7. Calculate/execute weight changes for criticNN#1;
8 .If t<epoch, increment t and goto 1,
9. Set criticNN#2=criticNN#] and go to 1.

4b. Use criticNN#2 to update criticNN#1;
use criticNN#1 to update actionNN.
1. Scale R(t) and apply it to the actionNN, obtain u(t),
2. Apply u(t) to the plant and obtain R(t+1);
3. Scale R(t+1), apply it to criticNN#2, obtain A(t+1),
4. Calculate desired output A° (t) for criticNN#1,
5. Scale R(t+1), apply it to criticNN#1, obtain A(t+1),
6. Calculate/execute weight changes for actionNN per
Section 3;
7. Scale R(t) and apply it to criticNN#1;
8. Calculate/execute weight changes for criticNN#1;
9. If t<epoch, increment t and go to 1;
10. Set criticNN#2=criticNN#1 and go to 1.

b

Example Application

Ry®) = x() R(1) = O)
Ry(®) = %) Ry(t) = O()
Ry(0) = (1) Rg(n) = ©()

0 6 .
[derivatives wrt time]

F
- -

+
r

Figure 2: Schematic of pole balancer.
[Six dimensional state vector.]

The well known "inverted pendulum" or "pole bal-
ancer" problem, is used here as the test bed. This cart/pole
system is modeled by the following equations [1]:

m_+m ml

L2 . .
F-ml® sin®+ pcsgn(x)} _ ;_tLG)
¢

gsin®+ cos@[

Ry(t+1) = p
ll:_{_m(cosG))]
3 m +m
¢
.2 . .
F+ mI[@ sin@-@cos@] - p.csgn(x)
R;(t+ 1) =

mc+m
Rj(t+ 1) = RI(t)+1.' 'Rz(t); Rz(t+ 1y = R2(1)+r oR3(t)
R’(t+1) = R4(t)+TOR5(t); R5(t+1) = R5(t)+10R6(t)

715

1=0.05 sec; g= 9.8 m/s*, cart’s mass m.=1.0 kg,; pole’s
mass m=0.1 kg,; half pole length /=0.5m; friction coeffi-
cient of cart on track j1;=0.0005; friction coefficient of pole
on cart j1;=0.000002; F= force applied at c.g. at time t.
We define the utility function

U(t) = —0.25 o (©(t) ~ desired angle)? .

Balancing the pole means desired angle=0.

S. Experimental Results

Each of the strategies was applied to the test-bed prob-
lem. Strategy 2 is similar to those described in [3][2]. As
will be demonstrated in the following, modifying this

strategy by suspending adaptation of the A°process
during each epoch in which the) process is adapted

(after which 1.° is set equal toA) improves the overall
speed of convergence, and additionally, appears to
improve the quality of the resulting actionNN design.

Preliminary comments:

While coding of the model equations and of the basic
Backprop NN paradigm is straightforward, getting the
DHP process to converge turned out being a tedious task.
The available literature doesn’t offer full details (page lim-
itations!). We started with Strategy 2 (per [3]), and had to
discover useful values for leaming coefficients and the
epoch size. Further, we discovered the efficacy of scaling
the state space, and that using bias terms in the criticNN
and particularly in the actionNN gave problems. After
this, exploring the strategies we here report followed more
easily.

We simulated the inverted pendulum with the Euler
iteration method, used analytical equations to compute the
utility function U, and used an actionNN and a criticNN.
The neural network structures used were (layer format:
[input/hidden/output]): actionNN[6PE(lin.)/3PE(TanH)/
IPE(kTanH)]; criticNN[6PE(lin.)/6PE(TanH)Y6PE(lin.)].
These were trained using the basic Backpropagation algo-
rithm. The number of PE's are specific to the plant
(model).

Performance:

For the pole-balancer test bed, the training procedure
was to randomly initialize all the NNs [weight range:
(-.01,.01})], and to then provide a specified sequence of
starting angles (with zero being the "desired" angle),
allowing the system to train on each starting angle for a
specified number of seconds. The measure used for com-
paring the various DHP strategies takes the values
achieved by the primary utility function during training
and accumulates these over the sequence of starting
angles; the measure is here called C(j), where j labels a
separate pass through the sequence of angles. In a sense,
this measure incorporates the convergence speed of the

DHP strategy as well as the quality of the controller’s
actions along the way.

The sequence of starting angles used for the training
was: (5, -10, 20, -5, -20, 10) [degrees from vertical]. The
system was allowed to train on each starting angle for 30
seconds. The same sequence was run 3 times [measures
C(1), C(2), C(3)], with cumulative learning. For measur-
ing the quality of the resulting controller at the end of
training, the same sequence was applied one more time,
with no learning [measure C(4)].

To test generalization capability of the resulting
actionNN (controller) design, a test sequence of starting
angles was presented (-23, -18, -8, 3, 13, 23) and the
results measured in the same way as above [C(5)]. In this
case, the measure incorporates the speed of achieving bal-
ance and quality of the controller’s actions to achieve this.
The results were very encouraging, so a more aggressive
generalization test was performed via a second test
sequence: (-38, -33, 23, 38) [C(6)], reported below. It is
remarkable that in additonal tests, strategy 4a and 4b con-

trollers successfully generalized out to 48°.
The following table shows the parameters used for each
DHP strategy for the results presented. Each was selected
based on experimenter’s experience to yield lowest C(1).
Note that the actionNN is set up with a faster training rate
than the criticNN. We observed that each strategy did best
for a certain ratio of training rates of these two NNs.
Strategy] 1 2a | 2b/ | 3a 4a | 4b
[Train param. 3b
criticNN: learn coeff] 0.03 1 0.03 | 0.02 | 02 | 0.15| 0.2
actionNN: learncoeff] 0.1 | 02 | 0.5 | 06 | 0.6 | 0.5
epoch: time steps na 3 5 3 5 5

The following table lists the value of the performance
measure for each DHP train strategy, averaged over 4 sep-
arate training runs. C(l)=accumulated cost during first
pass through train data, and C(4)=accumulated cost during
pass with train data after learning is stopped. C(5)=accu-
mulated cost during test sequence 1; C(6), test sequence 2.
1 | 2a 2b/3b] 3a | 4a | 4b
C(l) | 368 | 740 | 883 | 209 | 107 | 160
C@ |32 |31]29|28 12422
C(5) 5117917417562 55
C(6) |30512411254)|207 (145|140

We observe in this last table that strategies 4a & 4b con-
verge the fastest [lowest value of C(1)], and also appear
to yield the best controllers [lowest values in C(4), C(5)
& C(6) rows]. We note separately that strategy 1 (when
it converges) yields controllers on par with the better
ones.

The graphs shown in Figure 3 give a feel for the
progress of the training process under each of the strate-
gies. Figure 4 shows dynamic response using controller
from Strategy 4b, and compared with that from 2a..

716

6. Conclusions

In DHP and associated methods, a “desired output”
(target) is needed for training the criticNN, and this is typ-
ically calculated by running the criticNN one more com-
putational cycle to provide its next-in-time output, and
then use this value to compute the target for the present-
time cycle. The error term is calculated and the criticNN
update is performed in the usual way. These approaches
typically use a “copy” of the criticNN to perform (or at
least explain) the calculation of the target, and both copies
are updated at the same time. Since the criticNN that cal-
culates the target is changing with each update, it provides
a “moving target” for the criticNN training. In this paper,
we introduce a real copy of the criticNN (criticNN#2) for
making the target calculations, and very importantly, this
criticNN#2 is trained differently than is criticNN#1. The
idea is to provide the targer from a stable platform during
an epoch while adapting criticNN#1. Then at the end of
the epoch, criticNN#2 is made identical to the then-current
adapted state of criticNN#1, and a new epoch starts. In
this way, both the criticNN#1 and the actionNN can be
trained on-line during each epoch, with a faster overall
convergence than the older approach. Further, the lower
relative values of C(4), C(5) and C(6) suggest a “better”
design is developed for the controller (actionNN).

References

[1] Barto, A., Sutton, R. & Anderson, C. " Neuronlike Adaptive
Elements that can Solve Difficult Learning Control Problems”
inIEEE Transactions on Systems, Man and Cybernetics, Vol.
SMC-13, No.5, Sep/Oct 1983.

[2] Prokhorov, D. and Wunsch, D. "Advanced Adaptive Critic
Designs", PROCEEDINGS WCNN'96, pp. 83-87, San Diego,
Erlbaum, Sept. 1996.

[3] Santiago, R., presentation at the First Joint Mexico-US Inter-
national Workshop on Neural Networks and Neurocontrol,
Playacar, Mexico, Sept. 1995.

[4] Santiago, R. and Werbos, P. "New Progress Towards Truly
Brain-Like Intelligent Control", PROCEEDINGS WCNN 94,
pp. I-2tol-33, San Diego, Erlbaum, 1994.

[5] Visnevski, N. and Propkhorov, D. "Control of a Nonlinear
Muitivariable System with Adaptive Critic Designs", in Infel-
ligent Engineering Systems through Artificial Neural Net-
works 6 (PROC. ANNIE ‘96), Dagli, et.al., Eds., ASME Press,
pp. 559-565, 1996.

[6] Werbos, P. "Approximate Dynamic Programming for Real-
Time Control and Neural Modeling", Ch. 13 in Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
(White, D.A. and Sofge, D.A., eds.), Van Nostrand Reinhold,
New York, NY, 1992

[P

First disturbance Strategy 1

& pole falls

e ———
EIEE B S B S B A

Second disturb. - oo o

RS ARERERR)
et "

Strategy 3a

Stragegy 2a

O YUt

[EEERERRERE
———
3
E
-Ej
4
€
4
! f

Strategy 4a

I¥iyLyIce et

[HEEREREEEEEE]

Strategy 4b

I C - X =

Figure 3: Progress of training process under each of the strategies.

[Pole angles during the first 80 sec. of training (~3 disturbances). Note how fast Strategies 4a & 4b learn.]

— ——

Controller via Strategy 4b--Disturbances: 23°, -23°, 8°

____v‘.. it 00052 ms a4 S e e v e

% Controllers via Strategies 2a & 4b. 23° disturbance

[C4(5)=5.5]

Figure 4: Pole angles during part of test sequence.

[Markings below and parallel to axis are plotting artifacts.]

717

