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Abstract

In this work, we study a class of action-dependent
adaptive critic designs. Conventional adaptive critic
designs contain three basic modules: Critic, model,
ond action. Each of the three modules can be im-
plemented using a neural network. By combining
the critic network and the model network to form
a new critic network, we propose a form of action-
dependent adaptive critic designs where the critic net-
work implicitly includes a model network in it. An
important feature of the present design is that the
proposed action-dependent adaptive critic designs can
be applied to on-line learning control applications.
We also provide details about the training of the neu-
ral networks used in the present design. The present
training approach makes it possible the use of many
readily available neural network training algorithms
and tools without modifications. We employ the pole
balancing problem in our simulation study to show
the applicability of the present results.

1 Introduction

Suppose that one is given a discrete-time nonlinear
(time-varying) system

z(t + 1) = Flz(t),u(t), 1] 1)

where ¢ € R™ represents the state vector of the sys-
tem and u € R™ denotes the control action. Suppose
that one associates with this system the performance
index (or cost)

J[z(i),i] = YA U(k),u(k), k] (2)

k=1

where U is called the utility function and v is the
discount factor with 0 < v < 1. Note that J is de-
pendent on the initial time 7 and the initial state z(z),
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and it is referred to as the cost-to-go of state z(i).
The objective is to choose the control sequence u(k),
k=1,i+1,---, so that the J function (i.e., the cost)
in (2) is minimized. Dynamic programming is based
on Bellman’s principle of optimality [5], [8]: An opti-
mal (control) policy has the property that no matter
what previous decisions have been, the remaining de-
cisions must constitute an optimal policy with regard
to the state resulting from those previous decisions.

Suppose that one has computed the optimal cost
J*[z(t + 1),¢ + 1] from time ¢ + 1 on for all possi-
ble states z(t + 1), and that one has also found the
optimal control sequences from time ¢+1 on. The op-
timal cost results when the optimal control sequence
u*(t+1), u*(t+2), - --, is applied to the system with
initial state z(¢ + 1). Note that the optimal control
sequence depends on z(t + 1). If one applies an arbi-
trary control u(t) at time ¢ and then uses the known
optimal control sequence from ¢ + 1 on, the resulting
cost will be Ulx(t), u(t), t]+vyJ*[z(t+1),t+1], where
z(t) is the state at time ¢ and z(t + 1) is determined
by (1). According to Bellman, the optimal cost from
time ¢ on is equal to

T {(t),t] = min (Ule(0) u(t), 417 [w(+1),04+1]).

The optimal control u*(t) at time ¢ is the u(t) that
achieves this minimum, i.e.,

w*(t) = arg min (U[x(t),u(t), 1)+ T [2(t+1), t+1]).
(3)

Equation (3) is the principle of optimality for discrete-
time systems. Its importance lies in the fact that it
allows one to optimize over only one control vector at
a time by working backward in time. In other words,
any strategy of action that minimizes J in the short
term will also minimize the sum of U over all future
times.
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Figure 1: The three modules in a typical adaptive
critic design.

2 Adaptive Critic Designs

Adaptive critic designs (ACDs) have received increas-
ing attention recently (cf. [3], [6], [12], [13], [16]-{20]).
ACD is defined as a scheme that approzimates dy-
namic programming in the general case, i.e., approx-
imates optimal control over time in noisy, nonlinear
environments. There are many problems in prac-
tice which can be formulated as cost maximization or
minimization problems. Dynamic programming is a
very useful tool in solving these problems. However,
it is often computationally untenable to run true dy-
namic programming due to the backward numerical
process required for its solutions, i.e., as a result of
the “curse of dimensionality” [5]. Over the years,
progress has been made to circumvent the “curse of
dimensionality” by building a system, called “critic,”
to approximate the cost function in dynamic pro-
gramming (cf. [17], [20]). The idea is to approximate
dynamic programming solutions by using a function
approximation structure such as neural networks to
approximate the cost function.

A typical design of ACD consists of three modules—
Critic, Model, and Action [13], [17], [20], as shown in
Figure 1. In this case, the critic network outputs an
estimate of the J function in equation (2). This is
done by minimizing the following error measure over
time,

N Enll = Xt:Eh(t) ‘

=2 [J&) -~ U®) - vJ(t + 1) (4)

where J(t) = J[z(t),u(t),t, Wc] and We represents

@Network
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Figure 2: A new critic network.

the parameters of the critic network. The function
U is the same utility function as the one in (2) which
indicates the performance of the overall system (see
examples in [3], [12], [13], [17], [19]). When Ej(t) =0
for all ¢, (4) implies that

J@) =U(#) +~J(t +1)
=U(t) +4[UE+1) +vJ(t +2)] ©
= 5

= 3 U (k)
k=t

which is exactly the same as the cost in (2). It is
therefore clear that by minimizing the error func-
tion in (4), we will have a neural network trained so
that its output becomes an estimate of the cost func-
tion defined in (2). The model network in an ACD
predicts z(t + 1) given z(¢) and u(t), i.e., it learns
the mapping given in (1). The model network can
be trained previously off-line [13], [16], [17], [19], or
trained in parallel with the critic and action networks
[14]. The action network is trained with the objec-
tive of minimizing J(¢ + 1), through the use of the
action signal u(t) = u[z(t),t,W4]. Once an action
network is trained this way, i.e., trained by minimiz-
ing the output of critic network, the action network
will generate a control action signal which is the op-
timal control action or is very close to the optimal
control action (depending on how well the critic net-
work is trained). Recall that the goal of dynamic pro-
gramming is to obtain an optimal control sequence
as in (3), which will minimize the J function in (2).
During the training of the action network, the three
networks will be connected as shown in Figure 1.
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Figure 3: A typical scheme of an action-dependent
adaptive critic design.

3 Action-Dependent Adaptive

Critic Designs

In this section, we propose a modified version of the
ACD introduced in the preceding section. We will
consider a new critic network as defined in Figure 2.
We can see that the new critic network will include
the explicit model network in Figure 1 as part of its
internal state. This gives us a few advantages includ-
ing the simplification of the overall system design and
the feasibility of the present approach to applications
where a model network may be very difficult to ob-
tain.

In the following we will describe in detail how the
action network and the new critic network (therefore,
critic network in the sequel) in Figure 2 are trained.
We will use Figure 3 to refer to our new ACD. The
new design is actually an ACD with an embedded
model network. Since the ACD in Figure 3 includes
the control action signal as input to the critic net-
work, it is therefore a model-free action-dependent
ACD as defined in the literature [12], [13], [17], [20].
Note that in the literature, action-dependent ACDs
include both model-free and model-based versions.

Consider the ACD shown in Figure 3. The critic
network in this case will be trained by minimizing
the following error measure over time,

1Eqll =3 Eq(t)
=3[Q¢-1-U®) -Qer (6)

where Q(t) = Q[xz(t),u(t),t, W¢]. When E (t) =0
for all t, (6) implies that
Q) =U+1)+vQ(t+1)
=U(t+1) +4[U(t +2) +7Q(t + 2)]
-... )

= ¥ U,
k=t+1

Clearly, comparing (2) and (7), we have now Q(t) =
J[z(t+1),t+1]. Therefore, when minimizing the er-
ror function in (6), we have a neural network trained
so that its output becomes an estimate of the cost
function defined in (2) for ¢ =t +1, i.e., the value of
the cost function in the immediate future.

The training samples for the critic network are
obtained over a trajectory starting from z(0) at t =
0. Starting from 2(0), we can apply u(0) to equation
(1) (or the system to be controlled for on-line appli-
cations) to obtain z(1), and then apply z(1) and u(1)
to equation (1) to obtain 2(2), and so on. The action
signal u(t),t = 0,1, -, will be generated from an ini-
tial action network which is initialized with random
weights. The trajectory can be either over a fixed
number of time steps (e.g., 300 consecutive points in
[13]) or from ¢ = O until the final state is reached
(e.g., the plane is crashed or landed in the autoland-
ing problem [12]).

The input-output relationship of the critic net-
work in Figure 3 is given by

Q) = Q [a(t), u(t),t, WP

where Wép ) represents the weights of the critic net-
work after the pth weight update. There are two
approaches to train the critic network according to
(6) in the present case which are described next.

(1) Backward-in-time: We can train the critic
network at time ¢, with the output target given by
[@(t—1)=U(t)]/~- The training of the critic network
is to realize the mapping given by

o:{z1 - {tee-v-ver}. ©

In this case, we consider Q(¢) in (6) as the output
from the network to be trained and the target output
value is calculated using the critic network output at
time t - 1.

(2) Forward-in-time: We can train the critic net-
work at time ¢ — 1, with the output target given by
U(t) +~vQ(t). The training of the critic network is to
realize the mapping given by

{4} woemy  ©

In this case, we consider @{t—1) in (6) as the output
from the network to be trained and the target output
value is calculated using the critic network output at
time ¢.
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The two approaches described here are based on
two different view points of equation (6). However,
the backward-in-time approach may have problems
in numerical implementations. For example, when
0 < ¥ < 1, the target value in (8) will tend to increase
in magnitude [unless if we choose U(t) = 0 for most
t]. Our experiments have shown that if U(t) is chosen
as an error function (which will be non-zero until
the control objective is reached), the training of the
critic network using backward-in-time approach will
be numerically unstable due to the increase (without
bound) of the target value in (8). In the following
we will concern ourselves with the forward-in-time
approach.

After the critic network’s training is finished, the
action network’s training starts with the objective
of minimizing Q(t). For the training of the action
network, we start with z(0) and the action network
gives u(0) = u[z(0), W,({’ )]. We then use equation (1)
(or from the system to be controlled for on-line ap-
plications) to obtain z(1). Using the action network,
z(1) gives u(1) = ufz(1), ng")] and z(2) is obtained
from the plant at the next time step [or from the
simulation of equation (1)]. This process continues
until all the necessary training patterns are collected.
The goal of the action network training is to mini-
mize the output of the critic network Q(¢). In this
case, we can choose the target of the action network
training as zero or negative values, i.e., we will train
the action network so that the output of the critic
network becomes as small as possible. The desired
mapping which will be used for the training of the
action network in Figure 3 is given by

A:{z(t)} - {0(t)}

where 0(t) indicates the target of zero or negative
values. We note that during the training of the action
network, it will be connected to the critic network as
shown in Figure 3, and the target in (10) is for the
output of the critic network.

(10)

After the action network’s training cycle is com-
pleted, one may check the system’s performance, then
stop or continue the training procedure by going back
to the critic network’s training cycle again, if the per-
formance is not acceptable yet.

Remark 3.1 In the preceding, we did not provide
any details about the weight updating algorithm. In
many existing works on ACDs [13], [16], [17], [20],
weight updating algorithms have been proposed based
on primarily gradient based approach. When deriv-
ing the gradient based training algorithms, care must

be taken regarding the derivative of J(t + 1) or Q)
with respect to W¢ (cf. [19]). In the present ap-
proach, we concentrate on training neural networks
with clearly identified training patterns for each train-
ing step. Once the training patterns are identified
and collected, we can use readily available algorithms
in the literature to train our (critic and action) net-
works. We will test the Levenberg-Marquardt al-
gorithm [9] and the simple gradient method [10] in
our experiments which are implemented in MATLAB
Neural Network Toolbox [7] as trainlm function and
traingd function, respectively. 1

4 The Pole Balancing Problem

We consider the pole balancing (inverted pendulum)
problem [2] in our simulation study to evaluate the
ACD presented in the preceding section. This is the
problem of learning to balance an upright pole, whose
bottom is attached by a pivot to a cart that travels
along a track. The state of this system is given by
the pole’s angle and angular velocity and the cart’s
horizontal position and velocity. The only available
control actions are to exert forces of fixed magnitude
on the cart that push it to the left or right.

The event of the pole falling past a certain angle
or the cart running into the bounds of its track is
called a failure. A sequence of forces must be applied
so that failures can be avoided by balancing the pole
in the center of the track. A naive controller, before
learning much about the task, will be unable to avoid
failures. The pole and cart system is reset to its
initial state after each failure and the controller must
learn to balance the pole for as long as possible.

The cart-pole system is described by

mgsin 8(t) — cos 6(t) (f(t) + mylf%(t) sin G(t))

be) = (4/3)ml — mlcos? 0(2)
and
F&) +myl (92 (t)sin8(t) — 6(t) cos 9(t))
i(t) = .

m

The parameters used in the cart-pole system are:
g=98m/s?, m=11kg, m, =0.1kg, | =0.5m.
The step size suggested in [2] for numerical integra-
tion is 0.02 seconds. The constraints of the system
are given by —12° < § < 12° and -24 < z < 2.4
m. These constraints indicates that a failure occurs
when either |8] > 12° or |z| > 2.4. The control force
has a fixed magnitude of 10,i.e., f = —10 N or 10 N.
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The U function: The. control objective of this
problem is to avoid failures. This objective can be in-

dicated by the following U function chosen similarly

as given in [2],

Ut) = 1, if |6(¢)] > 12%or |z(?)] > 2.4 m
~ 10, otherwise.

When we minimize the sum of tth U function over
the period T of a trial given by Y v*U(k), we will

(11)

k=0
keep the cart-pole system from failure for as long as
possible.

The critic network: The critic network is chosen
as a 5—6-1 structure with 5 input neurons and 6 hid-
den layer neurons. The 5 inputs are the 4 states 8(t),
6(t), z(t), and &(t), and the output of the action net-
work u(t). For the critic network, the hidden layer
uses the sigmoidal function given by

_ 1—-e7
T 14e%’

i.e., the tansig function in MATLAB [7], and the
output layer uses the linear function purelin. Uti-
lizing the MATLAB Neural Network Toolbox, we
have applied traingd (simple gradient descent) and
trainlm (the Levenberg-Marquardt algorithm) for
the training of the critic network. We note that
other algorithms implemented in MATLAB, such as
traingda, traingdm, traingdx are also equally ap-
plicable. We use the forward-in-time approach out-
lined earlier (though the backward-in-time approach
works as well for the present example due to the way
the U function is defined). We employ sequential
training for the critic network, i.e., the training is
performed at each time step using the immediately
obtained training sample. We use v = 0.9 in the
present experiments.

Y

The action network: The structure of the action
network is chosen as 4-6-1 with 4 input neurons and
6 hidden layer neurons. The 4 inputs are 6(t), 6(t),
z(t), and &(t). Both the hidden layer and the out-
put layer use the sigmoidal function tansig. The
training algorithms we choose to use are traingd
and trainlm. We employ batch training for the ac-
tion network, i.e., the network is trained after each
trial. The output of the action network is u(t) which
is constrained to (—1,1). The control action applied
to the cart is computed as f(t) = 10sign [u(t)].

Comments on ezisting works: The pole balancing
problem has been considered by many researchers as
a good benchmark for testing new control and learn-
ing algorithms. In particular, this problem is con-

Atypical anglo trajoctory
T T T

Degrees
°

L . . ) . L " . .
o 50 100 150 200 250 300 350 400 450 500
Time steps

Figure 4: The angle trajectory from a successful trial.

sidered in [1}, [4], [11], and [15] as a benchmark for
testing ACDs/reinforcement learning. In the imple-
mentations of [1] and [4], the U function is chosen as
the same as in the present study and the action sig-
nals are generated using a random process biased by
the learning process. In the implementations of [11]
and [15] for testing ACDs, the U function is chosen as
a function associated with the system states, which
implies that a state measurement mechanism must be
employed. We note that the implementations of [11]
and [15] are not based on action-dependent ACDs.

Results: We display in Figure 4 a typical trajec-
tory of the pole angle from a successful trial using
the present action-dependent ACD. A success in our
study is defined as balancing the pole for at least 30
minutes (90000 steps) [2], [15], even though the dis-
play in Figure 4 is only for 500 steps. We conduct our
experiments starting from randomly initialized critic
and action networks. We choose randomly initial &
in the range of (—12°,12°) and zero values for the
other three states for each trial in our experiments
until a trial which successfully balances the pole for
at least 90000 steps. We repeat the experiments for
a total of 100 times. The average number of trials
which leads to the first successful balancing among
the 100 experiments is 26. We note that in the study
of [1], the authors do not reset each trial with ran-
dom initial states because they use a biased random
process for generating action signals. In our imple-
mentation, however, it seems necessary that we reset
each trial with random initial states (e.g., random
initial 8). If we reset each trial with the same or zero
initial states, the learning process will often get stuck
after a few trials leading to no further progress in the
learning process.
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5 Concluding Remarks

Starting from the conventional model-based adap-
tive critic designs, we argued that by combining the
model network and the critic network, we can obtain
an equivalent form of model-free action-dependent
adaptive critic designs. An important feature of the
present design is that the proposed designs can be
applied to on-line learning control applications. We
tested the present approach using the pole balanc-
ing problem and our simulation showed very good
performance results. We emphasize that in our sim-
ulation studies, we used the commercially available
MATLAB package for the training of our networks.
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