
264 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

On-Line Learning Control by Association and
Reinforcement

Jennie Si, Senior Member, IEEE,and Yu-Tsung Wang, Member, IEEE

Abstract—This paper focuses on a systematic treatment for
developing a generic on-line learning control system based on
the fundamental principle of reinforcement learning or more
specifically neural dynamic programming. This on-line learning
system improves its performance over time in two aspects. First,
it learns from its own mistakes through the reinforcement signal
from the external environment and tries to reinforce its action
to improve future performance. Second, system states associated
with the positive reinforcement is memorized through a network
learning process where in the future, similar states will be more
positively associated with a control action leading to a positive
reinforcement. A successful candidate of on-line learning control
design will be introduced. Real-time learning algorithms will
be derived for individual components in the learning system.
Some analytical insight will be provided to give guidelines on the
learning process took place in each module of the on-line learning
control system. The performance of the on-line learning controller
is measured by its learning speed, success rate of learning, and the
degree to meet the learning control objective. The overall learning
control system performance will be tested on a single cart-pole
balancing problem, a pendulum swing up and balancing task,
and a more complex problem of balancing a triple-link inverted
pendulum.

Index Terms—Neural dynamic programming (NDP), on-line
learning, reinforcement learning.

I. INTRODUCTION

WE ARE considering a class of learning decision and
control problems in terms of optimizing a performance

measure over time with the following constraints. First, a
model of the environment or the system that interacts with the
learner is not availablea priori. The environment/system can be
stochastic, nonlinear, and subject to change. Second, learning
takes place “on-the-fly” while interacting with the environment.
Third, even though measurements from the environment are
available from one decision and control step to the next, a final
outcome of the learning process from a generated sequence of
decisions and controls may come as a delayed signal in only an
indicative “win” or “loose” format.

Dynamic programming has been applied in different fields
of engineering, operations research, economics, and so on for
many years [2], [5], [6], [22]. It provides truly optimal solu-
tions to nonlinear stochastic dynamic systems. However, it is

Manuscript received October 7, 1999; revised March 20, 2000 and November
20, 2000. This work was supported by NSF under Grants ECS-9553202 and
ECS-0002098 and in part by EPRI-DOD under Grant WO8333-01, by DARPA
under Grant MDA 972-00-1-0027, and by Motorola.

The authors are with Department of Electrical Engineering, Arizona State
University, Tempe, AZ 85287-7606 USA (e-mail: si@asu.edu).

Publisher Item Identifier S 1045-9227(01)01404-7.

well understood that for many important problems the compu-
tation costs of dynamic programming are very high, as a result
of the “curse of dimensionality” [8]. Other complications in ap-
plications include a user supplied explicit performance measure
and a stochastic model of the system [2]. Incremental optimiza-
tion methods come in handy to approximate the optimal cost
and control policies [3], [11].

Reinforcement learning has held great intuitive appeal and
has attracted considerable attention in the past. But only recently
it has made major advancements by implementing the temporal
difference (TD) learning method [1], [16], [21]. The most note-
worthy result is a TD-Gammon program that has learned to play
Backgammon at a grandmaster level [17]–[19]. Interestingly
enough, the development history of Gammon programs also re-
flects the potentials and limitations of various neural networks
learning paradigms. With the success of TD-Gammon, the TD
algorithm is no doubt a powerful learning method in Markovian
environments such as game playing.

How does one ensure successful learning in a more generic
environment? Heuristic dynamic programming (HDP) was pro-
posed in the 1970s [22] and the ideas were firmed up in the early
1990s [23]–[25] under the names of adaptive critic designs. The
original proposition for HDP was essentially the same as the
formulation of reinforcement learning (RL) using TD methods.
Specifically a critic network “critiques” the generated action
value in order to optimize a future “reward-to-go” by propa-
gating a temporal difference between two consecutive estimates
from the critic/prediction network. This formulation falls ex-
actly into the Bellman equation. Even with the same intention at
the beginning, the two approaches started to differentiate by the
way the actions were generated. HDP and the adaptive critics
in general train a network to associate input states with action
values. On the other hand, TD-based Gammon programs, as
well as -learning, opted for search algorithms to determine the
optimal moves and, hence, avoid additional error during the ini-
tial action network training, with a price paid for search speed.

Existing adaptive critic designs [26] can be categorized as:
1) HDP; 2) dual heuristic dynamic programming (DHP); and 3)
globalized dual heuristic dynamic programming (GDHP). Vari-
ations from these three basic design paradigms are also avail-
able, such as action dependent (AD) versions of the above ar-
chitectures. AD refers to the fact that the action value is an
additional input to the critic network. Action dependent vari-
ants from the original three paradigms will be denoted with
an abbreviation of “AD” in front of their specific architecture.
For example, ADHDP and ADDHP denote “action dependent
heuristic dynamic programming” and “action dependent dual
heuristic dynamic programming,” respectively. Our proposed

1045–9227/01$10.00 © 2001 IEEE

SI AND WANG: ON-LINE LEARNING CONTROL BY ASSOCIATION AND REINFORCEMENT 265

on-line learning system is most relevant to ADHDP. Once again,
the basic idea in adaptive critic design is to adapt the weights of
the critic network to make the approximating function,, sat-
isfy the modified Bellman equation. In this framework, instead
of finding the exact minimum, an approximate solution is pro-
vided for solving the following equation:

(1)
where is the immediate cost incurred by
at time , and is a heuristic term used to balance [24]. To
adapt in the critic network, the target on the right-hand
side of (1) must be knowna priori. To do so, one may wait for a
time step until the next input becomes available. Consequently,

can be calculated by using the critic network at
time . Another approach is to use amodel network, which
is a pretrained network to approximate the system dynamics. In
principle, such a network can be trained on-line.

One major difference between HDP and DHP is within the
objective of the critic network. In HDP, the critic network
outputs directly, while DHP estimates the derivative of
with respect to its input vector. Since DHP builds derivative
terms over time directly, it reduces the probability of error in-
troduced by backpropagation. GDHP is a combination of DHP
and HDP, approximating both and
simultaneously with the critic network. Therefore, the per-
formance of GDHP is expected to be superior to both DHP
and HDP. However, the complexities of computation and
implementation are high for GDHP. The second derivative
terms, , need to be calculated at
every time step. Analysis and simulation results in [12] and
[13] are consistent with this observation.

Adaptive critic designs such as HDP, DHP, and GDHP, as well
as their action dependent versions have been applied to an au-
tolanding problem [12]. In implementations, the critic networks
of HDP and ADHDP are used to approximate. To obtain the
value of at time , the states or/and actions are predicted
by using a model network. The model network approximates
plant dynamics for a given state and action , and the
model network outputs . In [12], the model network
was trained off-line. Results from [12] show that GDHP and
DHP are better designs than the HDP and ADHDP for the au-
tolanding problem. The auto-landers trained with wind shear for
GDHP and DHP successfully landed 73% of all 600 trials while
those for HDP and ADHDP were below 50%.

From the previous discussions, we can also categorize adap-
tive critic designs by whether or not a model was used in the
learner, as shown in [26]. Note that in adaptive critic designs,
there are two partial derivative terms in the backpropagation
path from the Bellman equation. They are and

. When adaptive critic designs were imple-
mented without a model network (i.e., two-network design), the
second partial derivative term was simply ignored. The price
paid for omitting this term can be high. Results in [12] and [13],
seem to agree with this observation. In later implementations
such as DHP and GDHP, a model network was employed to take
into account the term.

Fig. 1. Schematic diagram for implementations of neural dynamic
programming. The solid lines represent signal flow, while the dashed lines are
the paths for parameter tuning.

Our proposed approach in this paper is closely related to
ADHDP. One major difference is that we do not use a system
model to predict the future system state value and consequently
the cost-to-go for the next time step. Rather, we store the
previous value. Together with the current value, we can
obtain the temporal difference used in training. We have thus
resolved the dilemma of either ignoring the
term by sacrificing learning accuracy or including an additional
system model network by introducing more computation
burden. In this paper, we present a systematic examination on
our proposed neural dynamic programming (NDP) design that
includes two networks, the action and the critic, as building
blocks. In the next two sections, we first introduce the building
blocks of the proposed NDP implementations and then the
associated on-line learning algorithms. In Section III, we
provide evaluations on the on-line NDP designs for a single
cart-pole balancing problem. Section IV gives evaluations of
NDP designs in a pendulum swing up and balancing task.
Section V includes simulation results of a more difficult on-line
learning control problem, namely the triple-link inverted pen-
dulum balancing task. After the presentation on NDP designs,
algorithms, and performance evaluations, we try to provide
some initial results on analytical insight of our on-line NDP
designs using stochastic approximation argument. Finally,
a section on conclusions and discussions is provided where
we also provide some preliminary findings on improving the
scalability of our proposed NDP designs.

II. A GENERAL FRAMEWORK FORLEARNING THROUGH

ASSOCIATION AND REINFORCEMENT

Fig. 1 is a schematic diagram of our proposed on-line learning
control scheme. The binary reinforcement signal is pro-
vided from the external environment and may be as simple as
either a “0” or a “-1” corresponding to “success” or “failure,”
respectively.

In our on-line learning control design, the controller is
“naive” when it just starts to control, namely the action network
and the critic network are both randomly initialized in their
weights/parameters. Once a system state is observed, an action
will be subsequently produced based on the parameters in the
action network. A “better” control value under the specific
system state will lead to a more balanced equation of the

266 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

principle of optimality. This set of system operations will be
reinforced through memory or association between states and
control output in the action network. Otherwise, the control
value will be adjusted through tuning the weights in the action
network in order to make the equation of the principle of
optimality more balanced.

To be more quantitative, consider the critic network as de-
picted in Fig. 1. The output of the critic element, thefunction,
approximates the discounted total reward-to-go. Specifically, it
approximates at time given by

(2)

where is the future accumulative reward-to-go value at
time , is a discount factor for the infinite-horizon problem
(). We have used in our implementations.

is the external reinforcement value at time .

A. The Critic Network

The critic network is used to provide as an approximate
of in (2). We define the prediction error for the critic ele-
ment as

(3)

and the objective function to be minimized in the critic network
is

(4)

The weight update rule for the critic network is a gradient-
based adaptation given by

(5)

(6)

(7)

where is the learning rate of the critic network at time
, which usually decreases with time to a small value, andis

the weight vector in the critic network.

B. The Action Network

The principle in adapting the action network is to indirectly
backpropagate the error between the desired ultimate objective,
denoted by , and the approximate function from the critic
network. Since we have defined “0” as the reinforcement signal
for “success,” is set to “0” in our design paradigm and in
our following case studies. In the action network, the state mea-
surements are used as inputs to create a control as the output of
the network. In turn, the action network can be implemented by
either a linear or a nonlinear network, depending on the com-
plexity of the problem. The weight updating in the action net-
work can be formulated as follows. Let

(8)

Fig. 2. Schematic diagram for the implementation of a nonlinear critic network
using a feedforward network with one hidden layer.

The weights in the action network are updated to minimize the
following performance error measure:

(9)

The update algorithm is then similar to the one in the critic net-
work. By a gradient descent rule

(10)

(11)

(12)

where is the learning rate of the action network at
time , which usually decreases with time to a small value, and

is the weight vector in the action network.

C. On-Line Learning Algorithms

Our on-line learning configuration introduced above involves
two major components in the learning system, namely the ac-
tion network and the critic network. In the following, we devise
learning algorithms and elaborate on how learning takes place
in each of the two modules.

In our NDP design, both the action network and the critic
network are nonlinear multilayer feedforward networks. In our
designs, one hidden layer is used in each network. The neural
network structure for the nonlinear multilayer critic network is
shown in Fig. 2.

In the critic network, the output will be of the form

(13)

(14)

(15)

where
th hidden node input of the critic network;

corresponding output of the hidden node;
total number of hidden nodes in the critic network;

SI AND WANG: ON-LINE LEARNING CONTROL BY ASSOCIATION AND REINFORCEMENT 267

total number of inputs into the critic network in-
cluding the analog action value from the action
network.

By applying the chain rule, the adaptation of the critic network
is summarized as follows.

1) (hidden to output layer)

(16)

(17)

2) (input to hidden layer)

(18)

(19)

(20)

Now, let us investigate the adaptation in the action network,
which is implemented by a feedforward network similar to the
one in Fig. 2 except that the inputs are themeasured states
and the output is the action . The associated equations for
the action network are

(21)

(22)

(23)

(24)

where is the input to the action node, and and are the
output and the input of the hidden nodes of the action network,
respectively. Since the action network inputs the state measure-
ments only, there is no ()th term in (24) as in the critic
network [see (15) for comparison]. The update rule for the non-
linear multilayer action network also contains two sets of equa-
tions.

1) (hidden to output layer)

(25)

(26)

(27)

In the above equations, is obtained by
changing variables and by chain rule. The result is the
summation term. is the weight associated with
the input element from the action network.

2) (input to hidden layer)

(28)

(29)

(30)

Normalization is performed in both networks to confine the
values of the weights into some appropriate range by

(31)

(32)

In implementation, (17) and (20) are used to update the
weights in the critic network and (27) and (30) are used to
update the weights in the action network.

III. PERFORMANCEEVALUATION FOR CASE STUDY ONE

The proposed NDP design has been implemented on a single
cart-pole problem. To begin with, the self-learning controller
has no prior knowledge about the plant but only on-line mea-
surements. The objective is to balance a single pole mounted
on a cart, which can move either to the right or to the left on a
bounded, horizontal track. The goal for the learning controller
is to provide a force (applied to the cart) of a fixed magnitude
in either the right or the left direction so that the pole stands
balanced and avoids hitting the track boundaries. The controller
receives reinforcement only after the pole has fallen.

In order to provide the learning controller measured states as
inputs to the action and the critic networks, the cart-pole system
was simulated on a digital computer using a detailed model that
includes all of the nonlinearities and reactive forces of the phys-
ical system such as frictions. Note that these simulated states
would be the measured ones in real-time applications.

A. The Cart-Pole Balancing Problem

The cart-pole system used in the current study is the same as
the one in [1].

sgn

(33)

(34)

268 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

where
m/s , acceleration due to gravity;
kg, mass of cart;
kg, mass of pole;
m, half-pole length;

, coefficient of friction of cart on track;
, coefficient of friction of pole on cart;

Newtons, force applied to cart’s center of mass;

sgn

if

if

if .

The nonlinear differential equations (33) and (34) are numeri-
cally solved by a fourth-order Runge–Kutta method. This model
provides four state variables: 1) , position of the cart on the
track; 2) , angle of the pole with respect to the vertical po-
sition; 3) , cart velocity; 4) , angular velocity.

In our current study a run consists of a maximum of 1000
consecutive trials. It is considered successful if the last trial
(trial number less than 1000) of the run has lasted 600 000 time
steps. Otherwise, if the controller is unable to learn to balance
the cart-pole within 1000 trials (i.e., none of the 1000 trials has
lasted over 600 000 time steps), then the run is considered un-
successful. In our simulations, we have used 0.02 s for each
time step, and a trial is a complete process from start to fall.
A pole is considered fallen when the pole is outside the range of
[12 12] and/or the cart is beyond the range of [2.4, 2.4] m
in reference to the central position on the track. Note that al-
though the force applied to the cart is binary, the control
fed into the critic network as shown in Fig. 1 is continuous.

B. Simulation Results

Several experiments were conducted to evaluate the effective-
ness of our learning control designs. The parameters used in the
simulations are summarized in Table I with the proper notations
defined in the following:

initial learning rate of the critic network;
initial learning rate of the action network;
learning rate of the critic network at timewhich
is decreased by 0.05 every five time steps until it
reaches 0.005 and it stays at there-
after;
learning rate of the action network at timewhich
is decreased by 0.05 every five time steps until it
reaches 0.005 and it stays at there-
after;
internal cycle of the critic network;
internal cycle of the action network;
internal training error threshold for the critic net-
work;
internal training error threshold for the action net-
work;
number of hidden nodes.

Note that the weights in the action and the critic networks
were trained using their internal cycles, and , respec-
tively. That is, within each time step the weights of the two net-

TABLE I
SUMMARY OF PARAMETERS USED IN OBTAINING THE RESULTS

GIVEN IN TABLE II

TABLE II
PERFORMANCEEVALUATION OF NDP LEARNING CONTROLLER WHEN

BALANCING A CART-POLE SYSTEM. THE SECOND COLUMN REPRESENTS THE

PERCENTAGE OFSUCCESSFULRUNS OUT OF100. THE THIRD COLUMN

DEPICTS THEAVERAGE NUMBER OF TRIALS IT TOOK TO LEARN TO BALANCE

THE CART-POLE. THE AVERAGE IS TAKEN OVER THE SUCCESSFULRUNS

works were updated for at most and times, respectively,
or stopped once the internal training error thresholdand
have been met.

To be more realistic, we have added both sensor and actuator
noise to the state measurements and the action network output.
Specifically, we implemented the actuator noise through

, where is a uniformly distributed random variable. For
the sensor noise, we experimented with adding both uniform and
Gaussian random variables to the angle measurements. The
uniform state sensor noise was implemented through(1
noise percentage) . Gaussian sensor noise was zero mean
with specified variance.

Our proposed configuration of neural dynamic programming
has been evaluated and the results are summarized in Table II.
The simulation results summarized in Table II were obtained
through averaged runs. Specifically, 100 runs were performed
to obtain the results reported here. Each run was initialized to
random conditions in terms of network weights. If a run is suc-
cessful, the number of trials it took to balance the cart-pole is
then recorded. The number of trials listed in the table corre-
sponds to the one averaged over all of the successful runs. There-
fore there is a need to record the percentage of successful runs
out of 100. This number is also recorded in the table. A good
configuration is the one with a high percentage of successful
runs as well as a low average number of trials needed to learn to
perform the balancing task.

Fig. 3 shows a typical movement or trajectory of the pen-
dulum angle under NDP controller for a successful learning
trial. The system under consideration is not subject to any noise.

SI AND WANG: ON-LINE LEARNING CONTROL BY ASSOCIATION AND REINFORCEMENT 269

Fig. 3. A typical angle trajectory during a successful learning trial for the NDP
controller when the system is free of noise.

Fig. 4. Histogram of angle variations under the control of NDP on-linear
learning mechanism in the single cart-pole problem. The system is free of
noise in this case.

Fig. 4 represents a summary of typical statistics of the learning
process in histograms. It contains vertical angle histograms
when the system learns to balance the cart-pole using ideal
state measurements without noise corruption.

IV. PERFORMANCEEVALUATION FOR CASE STUDY TWO

We now examine the performance of the proposed NDP de-
sign in a pendulum swing up and balancing task. The case under
study is identical to the one in [15].

The pendulum is held by one end and can swing in a vertical
plane. The pendulum is actuated by a motor that applied a torque
at the hanging point. The dynamics of the pendulum is as fol-
lows:

(35)

(36)

TABLE III
PERFORMANCEEVALUATION OF NDP LEARNING CONTROLLER TOSWING UP

AND THEN BALANCE A PENDULUM. THE SECOND COLUMN REPRESENTS THE

PERCENTAGE OFSUCCESSFULRUNS OUT OF60. THE THIRD COLUMN DEPICTS

THE AVERAGE NUMBER OF TRIALS IT TOOK TO LEARNING TO SUCCESSFULLY

PERFORM THETASK. THE AVERAGE ISTAKEN OVER THE SUCCESSFULRUNS

where and are the mass and length of the
pendulum bar, respectively, and is the gravity. The ac-
tion is the angular accelerationand it is bounded between
and 3, namely, , and . A control action
is applied every four time steps. The system states are the cur-
rent angle and the angular velocity . This task requires the
controller to not only swing up the bar but also to balance it at
the top position. The pendulum initially sits still at . This
task is considered difficult in the sense that 1) no closed-form
analytical solution exists for the optimal solution and complex
numerical methods are required to compute it and 2) the max-
imum and minimum angular acceleration values are not strong
enough to move the pendulum straight up from the starting state
without first creating angular momentum [15].

In this study, a run consists of a maximum of 100 consecutive
trials. It is considered successful if the last trial (trial number less
than 100) of the run has lasted 800 time steps (with a step size
of 0.05 s). Otherwise, if the NDP controller is unable to swing
up and keep the pendulum balanced at the top within 100 trials
(i.e., none of the 100 trails has lasted over 800 time steps), then
the run is considered unsuccessful. In our simulations, a trial
is either terminated at the end of the 800 time steps or when
the angular velocity of the pendulum is greater than, i.e.,

.
In the following, we studied two implementation scenarios

with different settings in reinforcement signal. In Setting 1,
when the angle displacement is within 90from the po-

sition of ; when the angle is in the rest half
of the plane; and when the angular velocity .
In Setting 2, when the angle displacement is within 10
from the position of ; when the angle is in the
remaining area of the plane; and when the angular ve-
locity .

Our proposed NDP configuration is then used to perform
the above described task. We have used the same configura-
tion and the same learning parameters as those in the first case
study. NDP controller performance is summarized in Table III.
The simulation results summarized in the table were obtained
through averaged runs. Specifically, 60 runs were performed to
obtain the results reported here. Note that we have used more
runs than that in [15] (which was 36) to generate the final re-
sult statistics. But we have kept every other simulation condi-
tion the same as that in the paper [15]. Each run was initialized
to and . The number of trials listed in the table
corresponds to the one averaged over all of the successful runs.
The percentage of successful runs out of 60 was also recorded

270 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 5. A typical angle trajectory during a successful learning trial for the NDP
controller in the pendulum swing up and balancing task.Left: the entire trial.
Right: portion of the entire trajectory to show the stabilization process in detail.

in the table. Fig. 5 shows a typical trajectory of the pendulum
angle under NDP controller for a successful learning trial. This
trajectory is characteristic for both Setting 1 and Setting 2.

V. PERFORMANCEEVALUATION FOR CASE STUDY THREE

The NDP design introduced in the previous sections is now
applied to a more complex on-line learning control problem than
the single cart-pole balancing task, namely, the triple-link in-
verted pendulum problem with single control input. We have
successfully implemented our proposed NDP configuration on
this problem. The details of the implementation and results will
be given in the following subsections.

A. Triple-Link Inverted Pendulum with Single Control Input

The system model for the triple-link problem is the same as
that in [7]. Fig. 6 depicts the notation used in the state equations
that govern the system.

The equation governing the system is

(37)

Fig. 6. Definition of notation used in the system equations for the triple-link
inverted pendulum problem.

where the components are shown in the equation at the bottom
of the page. Note that the’s in are Coulomb friction
coefficients for links and they are not linearizable [7]. In our
simulations, , and . The
coefficients are system constants and are given in Table IV.

The parameters used in the system are defined as follows:
m/s , acceleration due to gravity;

kg, mass of the cart;
kg, mass of the first link;

kg, mass of the second link;
kg, mass of the third link;

m, the length from the mount joint to the center
of gravity of the first link;

m, the length from the first joint to the center of
gravity of the second link;

m, the length from the second joint to the center
of gravity of the third link;

m, total length of the first link;
m, total length of the second link;
m, total length of the third link;

kgm , mass moment of inertia of the first
link about its center of gravity;

kgm , mass moment of inertia of the second
link about its center of gravity;

sgn
sgn
sgn
sgn

SI AND WANG: ON-LINE LEARNING CONTROL BY ASSOCIATION AND REINFORCEMENT 271

TABLE IV
SYSTEM CONSTANTS FOR THETRIPLE LINK INVERTED PENDULUM PROBLEM

kgm , mass moment of inertia of the
third link about its center of gravity;

Nms, dynamic friction coefficient between the
cart and the track;

Nms, dynamic friction coefficient for
the first link;

Nms, dynamic friction coefficient for
the second link;

Nms, dynamic friction coefficient for
the third link.

The only control (in volts) generated by the action network is
converted into force by an analog amplifier through a conver-
sion gain (in Newtons/volt). In simulations,
N/V. Each link can only rotate in the vertical plane about the axis
of a position sensor fixed to the top of each link. The sampling
time interval is chosen to be 5 ms. From the nonlinear dynam-
ical equation in (37), the state-space model can be described as
follows:

(38)

with

and

TABLE V
SUMMARY OF PARAMETERS USED IN OBTAINING THE RESULTSGIVEN IN

TABLE VI FOR THETRIPLE-LINK INVERTED PENDULUM PROBLEM

There are eight state variables in this model: 1) , position of
the cart on the track; 2) , vertical angle of the first link joint
to the cart; 3) , vertical angle of the second link joint to the
first link; 4) , vertical angle of the third link joint to the
second link; 5) , cart velocity; 6) , angular velocity of

; 7) , angular velocity of ; and 8) , angular
velocity of .

In the triple-link inverted pendulum problem, a run consists
of a maximum of 3000 consecutive trials. Similar to the single
cart-pole balancing problem, a run is considered successful if
the last trial of the run lasts 600 000 time steps. However, now a
unit time step is 5 ms instead of 20 ms as in the single cart-pole
problem. The constraints for the reinforcement learning are: 1)
the cart track extends 1.0 m to both ends from the center po-
sition; 2) the voltage applied to the motor is within [30, 30]
V range; and 3) each link angle should be within the range of
[20 20] with respect to the vertical axis. In our simulations,
condition 2 is assured to be satisfied by using a sigmoid func-
tion at the output of the action node. For conditions 1) and 3),
if either one fails or both fail, the system provides an indicative
signal at the moment of failure, otherwise all the
time. Several experiments were conducted to evaluate the effec-
tiveness of the proposed learning control designs. The results
are reported in the following section.

B. Simulation Results

Note that the triple-link system is highly unstable. To see this,
the positive eigenvalues of the linearized system model are far
away from zero (the largest is around 10.0). In obtaining the
linearized system model, the Coulomb friction coefficients are
assumed to be negligible. Besides, the system dynamics changes
fast. It requires a sampling time below 10 ms.

Since the analog output from the action network is directly
fed into the system this time, the controller is more sensitive to
the actuator noise than the one in the single cart-pole where a
binary control is applied. Experiments conducted in this paper
include evaluations of NDP controller performance under uni-
form actuator noise, uniform or Gaussian sensor noise, and the
case without noise.

Before the presentation of our results, the learning parame-
ters are summarized in Table V. Simulation results are tabulated
in Table VI. Conventions such as noise type and how they are
included in the simulations are described in Section III-B.

Fig. 7 shows typical angle trajectories of the triple-link
angles under NDP control for a successful learning trial. The
system under consideration is not subject to any noise. The
corresponding control force trajectory is also given in Fig. 8.

272 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

TABLE VI
PERFORMANCEEVALUATION OF NDP LEARNING CONTROLLER WHEN

BALANCING A TRIPLE-LINK INVERTED PENDULUM. THE SECOND COLUMN

REPRESENTS THEPERCENTAGE OFSUCCESSFULRUNS OUT OF100. THE

THIRD COLUMN DEPICTS THEAVERAGE NUMBER OF TRIALS IT TOOK TO

LEARNING TO BALANCE THE CART POLE. THE AVERAGE IS TAKEN OVER

THE SUCCESSFULRUNS

Fig. 7. Typical angle trajectories of the triple-link angles during a successful
learning trial using on-line NDP control when the system is free of noise.

Fig. 9 represents a summary of statistics of the learning process
in histograms.

The results presented in this case study have again demon-
strated the validity of the proposed NDP designs. The major
characteristics of the learning process for this more complex
system are still similar to the single cart-pole problem in many
ways. It is worth mentioning that the NDP controlled angle vari-
ations are significantly smaller than those using nonlinear con-
trol system design as in [7].

VI. A NALYTICAL CHARACTERISTICS OFON-LINE NDP
LEARNING PROCESS

This section is dedicated to expositions of analytical proper-
ties of the on-line learning algorithms in the context of NDP.
It is important to note that in contrast to usual neural-network
applications, there is no readily available training sets of
input–output pairs to be used for approximatingin the sense
of least squares fit in NDP applications. Both the control action

and the approximated function are updated according to

Fig. 8. The force (in Newton) trajectory, which is converted from controlu

into voltage, applied to the center of the cart for balancing the triple-link inverted
pendulum, corresponding to the angle trajectory in Fig. 7.

Fig. 9. Histogram of the triple-link angle variations when the system is free of
noise.

an error function that changes from one time step to the next.
Therefore, the convergence argument for the steepest descent
algorithm does not hold valid for any of the two networks,
action or critic. This results in a simulation approach to evaluate
the cost-to-go function for a given control action . The
on-line learning takes place aiming at iteratively improving the
control policies based on simulation outcomes. This creates
analytical and computational difficulties that do not arise in a
more typical neural-network training context.

Some analytical results in terms of approximatingfunction
was obtained by Tsitsiklis [20] where a linear in parameter func-
tion approximator was used to approximate thefunction. The
limit of convergence was characterized as the solution to a set
of interpretable linear equations, and a bound is placed on the
resulting approximation error.

It is worth pointing out that the existing implementations of
NDP are usually computationally very intensive [4], and often
require a considerable amount of trial and error. Most of the
computations and experimentations with different approaches
were conducted off-line.

SI AND WANG: ON-LINE LEARNING CONTROL BY ASSOCIATION AND REINFORCEMENT 273

In the following, we try to provide some analytical insight
on the on-line learning process for our proposed NDP designs.
Specifically we will use the stochastic approximation argument
to reveal the asymptotic performance of our on-line NDP
learning algorithms in an averaged sense for the action and the
critic networks under certain conditions.

A. Stochastic Approximation Algorithms

The original work in recursive stochastic algorithms was in-
troduced by Robbins and Monro, who developed and analyzed
a recursive procedure for finding the root of a real-valued func-
tion of a real variable [14]. The function is not known,
but noise-corrupted observations could be taken at values of
selected by the experimenter.

A function with the form (is
the expectation operator) is called a regression function of ,
and conversely, is called a sample function of . The
following conditions are needed to obtain the Robbins–Monro
algorithm [14].

(C1) has a single root , , and

if

if .

This is assumed with little loss of generality since most
functions of a single root not satisfying this condition
can be made to do so by multiplying the function by

.
(C2) The variance of from is finite

(39)

(C3)

(40)

(C3) is a very mild condition. The values of and
need not be known to prove the validity of the algo-
rithm. As long as the root lies in some finite interval,
the existence of and can always be assumed.

If the conditions (C1) through (C3) are satisfied, the algo-
rithm due to Robbins and Monro can be used to iteratively seek
the root of the function :

(41)

where is a sequence of positive numbers which satisfy the
following conditions:

(42)

Furthermore, will converge toward in the mean square
error sense and with probability one, i.e.,

(43)

Prob (44)

The convergence with probability one in (44) is also called con-
vergence almost truly.

In this paper, the Robbins–Monro algorithm is applied to opti-
mization problems [10]. In that setting, , where

is an objective function to be optimized. If has a local op-
timum at , will satisfy the condition (C1) locally at .
If has a quadratic form, will satisfy the condition (C1)
globally.

B. Convergence in Statistical Average for theAction and the
Critic Networks

Neural dynamic programming is still in its early stage of de-
velopment. The problem is not trivial due to several consecutive
learning segments being updated simultaneously. A practically
effective on-line learning mechanism and a step by step analyt-
ical guide for the learning process do not co-exist at this time.
This paper is dedicated to reliable implementations of NDP al-
gorithms for solving a general class of on-line learning control
problem. As demonstrated in previous sections, experimental
results in this direction are very encouraging. In the present sec-
tion, we try to provide some asymptotic convergence results for
each component of the NDP system. The Robbins–Monro algo-
rithm provided in the previous section is the main tool to obtain
results in this regard. Throughout this paper, we have implied
that the state measurements are samples of a continuous state
space. Specifically we will assume without loss of generality
that the input has discrete probability density

, where is the delta function.
In the following, we analyze one component of the NDP

system at a time. When one component (e.g., the action
network) is under consideration, the other component (e.g.,
the critic network) is considered to have completed learning,
namely their weights do not change any more.

To examine the learning process taking place in the action
network, we define the following objective function for the ac-
tion network:

(45)

It can be seen that (45) is an “averaged” error square between
the estimated and a final desired value . To contrast this
notion, (9) is an “instantaneous” error square between the two.
To obtain a (local) minimum for the “averaged” error measure in
(45), we can apply the Robbins–Monro algorithm by first taking
a derivative of this error with respect to the parameters, which
are the weights in the action network in this case. Let

(46)

Since is smooth in , and belongs to a bounded set,
the derivative of with respect to the weights of the action
network is then of the form:

(47)

According to the Robbins–Monro algorithm, the root (can be a
local root) of as a function of can be obtained by

274 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

the following recursive procedure, if the root exists and if the
step size meets all the requirements described in (42):

(48)

Equation (46) may be considered as an instantaneous error
between a sample of the function and the desired value .
Therefore, (48) is equivalent to the update equation for the
action network given in (10)–(12). From this viewpoint, the
on-line action network updating rule of (10)–(12) is actually
converging to a (local) minimum of the error square between
the function and the desired value in a statistical average
sense. Or in other words, even though (10)–(12) represent a
reduction in instantaneous error square at each iterative time
step, the action network updating rule asymptotically reaches a
(local) minimum of the statistical average of .

By the same token, we can construct a similar framework to
describe the convergence of the critic network. Recall that the
residual of the principle of optimality equation to be balanced
by the critic network is of the following form:

(49)

And the “instantaneous” error square of this residual is given as

(50)

Instead of the “instantaneous” error square, let

(51)

and assume that the expectation is well defined over the discrete
state measurements. The derivative of with respect to the
weights of the critic network is then of the form

(52)

According to the Robbins–Monro algorithm, the root (can be a
local root) of as a function of can be obtained by
the following recursive procedure, if the root exists and if the
step size meets all the requirements described in (42):

(53)

Therefore, (53) is equivalent to the update rule for the critic
network given in (5)–(7). From this viewpoint, the on-line critic
network update rule of (5)–(7) is actually converging to a (local)
minimum of the residual square of the equation of the principle
of optimality in a statistical average sense.

VII. D ISCUSSION ANDCONCLUSION

This paper focuses on providing a systematic treatment of
an NDP design paradigm, from architecture, to algorithm, an-
alytical insights, and case studies. The results presented in this
paper represent an effort toward generic and robust implementa-
tions of on-line NDP designs. Our design presented in the paper
has, in principle, advanced in several aspects from the existing
results. First, our proposed configuration is simpler than adap-
tive critic designs. Even though it is very similar to ADHDP, we
have provided a mechanism that does not require a prediction

model. The ADHDP design in adaptive critics either ignores the
predictive model that results in nontrivial training errors or in-
cludes an additional prediction network that results in additional
complexities in learning. Also, our design is robust in the sense
that it is insensitive to parameters such as initial weights in the
action and/or critic network, the values for the ultimate objec-
tive, , etc. Key learning parameters are listed clearly in the
paper for reproduction of our NDP design. Second, our NDP
design has been tested on cases and has shown robustness in
different tasks. The triple-link inverted pendulum balancing is
a difficult nonlinear control problem in many ways. Our results
measured by tightness of the vertical angles to the upright po-
sition is much improved over the traditional nonlinear control
system designs used in [7]. When compared to the original RL
designs by Barto [1], our on-line learning mechanism is more ro-
bust when subject to various noise, faster in learning to perform
the task, and requires less number of trials to learn the task. The
designs in [15] generally require more free parameters than our
NDP design. Plus, our reinforcement signal is simpler than that
in [15]. However our simulation results have demonstrated very
robust performance by the proposed NDP configuration. Third,
the fundamental guideline for the on-line learning algorithms
is the stochastic gradient. We therefore have an estimate of the
asymptotic convergence property for our proposed on-line NDP
designs under some conditions in statistical sense. This provides
more insight to the on-line learning NDP designs.

Next, we would like to share some of our experience on ways
to handle large scale problems or the issue of scalability in NDP
design. We developed and tested several designs that included
a self-ganizing map (SOM) prior to the action network. The
SOM takes the system states as inputs and produces an orga-
nized or reduced dimension expression of these input states to
be passed onto the action network. In our experiments, we have
used standard SOM algorithm developed by Kohonen [9]. The
SOM as a state classifier can compress state measurements into
a smaller set of vectors represented by the weights of the SOM
network. On the other hand, it introduces quantization error
that degrades the overall system performance accordingly. In
terms of learning efficiency with the added SOM component,
on one hand it reduces the feature space that the action net-
work is exposed to and therefore it contributes toward a reduc-
tion in learning complexity in the action network. But on the
other hand, adding a new network such as SOM (using the stan-
dard Kohonen training) can introduce tremendous computation
burden on the overall learning system.

To have a more quantitative understanding of the effect of
SOM on the overall learning system performance, we performed
several learning tasks. First, we studied the system performance
on the single cart-pole problem. We added an SOM network
right in front of the action network. Refer to Fig. 1, the input
to the SOM is the state and the weight vectors of the SOM
become the inputs to the action network. We then performed the
same set of experiments as those documented in Table II. When
compared to the results in the table without the SOM element in
the learning system, we have observed much degraded perfor-
mance by adding the SOM element. Specifically, we saw a 7.1%
decreases in the success rate through the seven different cases
(with different noise type), and a 142% increase in the number

SI AND WANG: ON-LINE LEARNING CONTROL BY ASSOCIATION AND REINFORCEMENT 275

of trials needed to learn to balance the single cart-pole. Appar-
ently the quantization error and the increased learning burden
from SOM are contributing to this performance degradation.

We then performed a similar set of experiments on the
triple-link inverted pendulum. Again, significant performance
degradation was observed. With a closer examination at the
quantization error, we realized that it was as high as 0.2 rad
which corresponds to about 11! It is soon realized that this
high quantization error was due to the fast dynamics inherent in
the triple-link inverted pendulum, which results in significant
variances in the derivatives of the state measurements. The
imbalance between the original state measurements (such
as the angles) and the derivatives of the angles (the angular
velocity) has created high demand in SOM resolution, or if not,
significant quantization errors will result. To circumvent this,
we divided the action network inputs into two sections. First,
an SOM is employed to compress the state measurements,,

, , and , into a finite set of four-dimensional weight
vectors, which forms one set of the inputs to the action network.
The other set of inputs to the action network comes directly
from the derivatives of the state measurements, namely,, ,

, . With such an implementation, the quantization error
from the SOM is only about 0.04 rad (or, equivalently,) on
average. The overall learning performance was improved also.
Specifically, we only see 3.8% decrease in success rate through
the seven cases when compared to those in Table VI, and only
1.6% increase in the number of trials needed to learn to balance
the triple-link inverted pendulum.

Note that, we believe there is still room for improving the
quantization error and the learning speed inherent with the SOM
network. One interesting observation from our experiments with
SOM is that the learning speed for a controller with the SOM
is not that much slower than the one without the SOM, espe-
cially in a complex task. The effect of reducing learning com-
plexity has surfaced by using SOM as a compressor. It is quite
convincing from our experiments on the single cart-pole that
the SOM has added a tremendous computation overhead for
the overall learning speed, especially for a relatively simple
and low-dimensional problem. However, when one deals with
a more complex system with more state variables, although the
SOM still introduces computation overhead, its advantage of re-
ducing the number of training patterns for the action network
becomes apparent, which as a matter of fact may have reduced
the overall learning complexity.

As discussed earlier, a good learning controller should be the
one that learns to perform a task quickly, and also, learns al-
most all the time with a high percentage of success rate. Another
factor that may not be explicitly present in the reinforcement
signal is the degree of meeting the performance requirement. In
all case studies, however, it is quite intriguing to see that the
learning controllers are not only trying to balance the poles, but
also trying to maintain the poles as centered as possible.

In summary, our results are very encouraging toward de-
signing truly automatic and adaptive learning systems. But this
paper only represents a start of this highly challenging task.
Many more issues are still open such as how to characterize
the overall learning process, instead of isolated and asymptotic
guidelines, and how to interpret the controller output and

system performance in a more systematic manner. As foresee-
able goals, for one thing, the learning speed of the SOM can be
improved potentially, and the overall system design should be
tested on many more complex systems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their helpful comments. They also would like to thank L. Yang
for carrying out the simulation study of Case II.

REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron like adaptive
elements that can solve difficult learning control problems,”IEEE Trans.
Syst., Man, Cybern., vol. 13, pp. 834–847, 1983.

[2] R. Bellman and S. Dreyfus, Applied Dynamic Program-
ming. Princeton, NJ: Princeton Univ. Press, 1962.

[3] D. P. Bertsekas,Dynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[4] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Program-
ming. Belmont, MA: Athena, 1996.

[5] T. Borgers and R. Sarin, “Learning through reinforcement and replicator
dynamics,”J. Economic Theory, vol. 77, no. 1, pp. 1–17, 1997.

[6] J. Dalton and S. N. Balakrishnan, “A neighboring optimal adaptive
critic for missile guidance,”Math. Comput. Modeling, vol. 23, no. 1,
pp. 175–188, 1996.

[7] K. D. Eltohamy and C.-Y. Kuo, “Nonlinear optimal control of a triple
link inverted pendulum with single control input,”Int. J. Contr., vol. 69,
no. 2, pp. 239–256, 1998.

[8] D. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs,
NJ: Prentice-Hall, 1970.

[9] T. Kohonen,Self-Organizing Map. Heidelberg, Germany: Springer-
Verlag, 1995.

[10] H. J. Kushner and G. G. Yin,Stochastic Approximation Algorithms and
Applications. New York: Springer-Verlag, 1997.

[11] R. E. Larson, “A survey of dynamic programming computational proce-
dures,”IEEE Trans. Automat. Contr., vol. AC-12, pp. 767–774, 1967.

[12] D. V. Prokhorov, R. A. Santiago, and D. C. Wunsch II, “Adaptive critic
designs: A case study for neuro-control,”Neural Networks, vol. 8, pp.
1367–1372, 1995.

[13] D. V. Prokhorov and D. C. Wunsch II, “Adaptive critic designs,”IEEE
Trans. Neural Networks, vol. 8, pp. 997–1007, Sept. 1997.

[14] H. Robbins and S. Monro, “A stochastic approximation method,”Ann.
Math. Statist., vol. 22, pp. 400–407, 1951.

[15] “COINS Tech. Rep.,” Univ. Mass., Amherst, 96–88, Dec. 1996.
[16] R. S. Sutton, “Learning to predict by the methods of temporal differ-

ence,”Machine Learning, vol. 3, pp. 9–44, 1988.
[17] G. Tesauro, “Neurogammon: A neural-network backgammon program,”

in Proc. Int. Joint Conf. Neural Networks, San Diego, CA, 1990, pp.
33–40.

[18] , “Practical issues in temporal difference learning,”Machine
Learning, vol. 8, pp. 257–277, 1992.

[19] , “TD-Gammon, a self-teaching backgammon program achieves
master-level play,”Neural Comput., vol. 6, 1994.

[20] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,”IEEE Trans. Automat. Contr.,
vol. 42, pp. 674–690, May 1997.

[21] C. J. C. H. Watkins and P. Dayan, “Q-learning,”Machine Learning, vol.
8, pp. 257–277, 1992.

[22] P. Werbos, “Advanced forecasting methods for global crisis warning and
models of intelligence,”General System Yearbook, vol. 22, pp. 25–38,
1977.

[23] , “A menu of design for reinforcement learning over time,” in
Neural Networks for Control, W. T. Miller III, R. S. Sutton, and P. J.
Werbos, Eds. Cambridge, MA: MIT Press, 1990, ch. 3.

[24] , “Neuro-control and supervised learning: An overview and val-
uation,” in Handbook of Intelligent Control, D. White and D. Sofge,
Eds. New York: Van Nostrand, 1992.

[25] , “Approximate dynamic programming for real-time control and
neural modeling,” inHandbook of Intelligent Control, D. White and D.
Sofge, Eds. New York: Van Nostrand, 1992.

276 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

[26] , “Tutorial on neurocontrol, control theory and related tech-
niques: from back propagation to brain-like intelligent systems,” in
Proc. 12th Int. Conf. Math Comput Modeling Sci. Comput., 1999,
www.iamcm.org/pwerbos/.

Jennie Si (S’90–M’91–SM’99) received the B.S.
and M.S. degrees from Tsinghua University, Beijing,
China, in 1985 and 1988, respectively, and the Ph.D.
degree from University of Notre Dame, Notre Dame,
IN, in 1991.

She has been with Arizona State University,
Tempe, since 1991 and is now Professor in the
Department of Electrical Engineering. Her current
research interest includes theory and application
of artificial neural learning systems, specifically
learning algorithms for statistical signal modeling

and data analysis. The objective is to provide adaptive human–machine
interface to solve large-scale signal and data analysis problems. Applications
include semiconductor process optimization and yield management at both
equipment and factory floor levels; spatial-temporal biological signal modeling
in motor cortical and auditory systems, 2-D visual information processing
through region of interest and robust feature selection; mining and interpreta-
tion of large data sets.

Dr. Si is a recipient of the 1995 NSF/White House Presidential Faculty
Fellow Award and a recipient of the Motorola Excellence Award in 1995. She
was Associate Editor of the IEEE TRANSACTIONS ONAUTOMATIC CONTROL in
1998 and 1999, has been an Associate Editor of the IEEE TRANSACTIONS ON

SEMICONDUCTORMANUFACTURING since 1998.

Yu-Tsung Wang (M’00) was born in 1971. He re-
ceived the Master of Science degree in engineering
and the Ph.D. degree in electrical engineering from
Arizona State University (ASU), Tempe, in 1994 and
1999, respectively.

He was a Research Assistant in the Department
of Electrical Engineering at ASU from 1995 to
1999. The main research was in the field of dynamic
programming using neural network structures
and mechanisms. In 1999, he joined Scientific
Monitoring, Inc., as a Senior Engineer. His major

work is in data trending algorithm, data analysis of aircraft engines, and
software development. He is also involved in developing a turbine engine
health monitoring system for the United States Air Force.

