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Abstract—This paper focuses on a systematic treatment for well understood that for many important problems the compu-
developing a generic on-line learning control system based on tation costs of dynamic programming are very high, as a result
the fundamental principle of reinforcement leaming or more ¢ 4ha “cyrse of dimensionality” [8]. Other complications in ap-
specifically neural dynamic programming. This on-line learning licati includ lied licit perf
system improves its performance over time in two aspects. First, plications inc u- € a user supplied explicit performance mgas_ure
it learns from its own mistakes through the reinforcement signal and a stochastic model of the system [2]. Incremental optimiza-
from the external environment and tries to reinforce its action tion methods come in handy to approximate the optimal cost
to improve future performance. Second, system states associatedand control policies [3], [11].
with the positive reinforcement is memorized through a network — painforcement learning has held great intuitive appeal and
learning process where in the future, similar states will be more h ttracted iderable attention in th t Butonl fl
positively associated with a control action leading to a positive . ds atracte can| eranie atiention ”_] e past. ; utonly recently
reinforcement. A successful candidate of on-line learning control it has made major advancements by implementing the temporal
design will be introduced. Real-time learning algorithms will difference (TD) learning method [1], [16], [21]. The most note-
be derived for individual components in the learning system. worthy resultis a TD-Gammon program that has learned to play
Some analytical insight will be provided to give guidelines on the g,y gammon at a grandmaster level [17]-[19]. Interestingly
learning process took place in each module of the on-line learning h the d | t hist fG |
control system. The performance of the on-line learning controller enough, the ev_e opmen : '_5 o_ry 0 ammon programs also re-
is measured by its |earning Speed’ success rate of |earning, and theﬂects the pOtentIals and limitations of various neural networks
degree to meet the learning control objective. The overall learning learning paradigms. With the success of TD-Gammon, the TD
control system performance will be tested on a single cart-pole algorithm is no doubt a powerful learning method in Markovian
balancing problem, a pendulum swing up anc_i bal_anc_lng task, environments such as game playing.
and a more complex problem of balancing a triple-link inverted L .
pendulum. How does one ensure successful learning in a more generic

environment? Heuristic dynamic programming (HDP) was pro-
posed in the 1970s [22] and the ideas were firmed up in the early
1990s [23]-[25] under the names of adaptive critic designs. The
original proposition for HDP was essentially the same as the

|. INTRODUCTION formulation of reinforcement learning (RL) using TD methods.

E ARE considering a class of learning decision ar]ﬁpecifically a critic network “critiques” the generated action

control problems in terms of optimizing a performancé{a“,Je in order to optimize a future “reward-io-go” by propa-
measure over time with the following constraints. First Eatmg a temporal difference between two consecutive estimates

model of the environment or the system that interacts with t ok .the critic/prediction ngtwork. Thi; formulation_ falls ex-
learner is not availabla priori. The environment/system can beaCtIy into the Bellman equation. Even with the same intention at

stochastic, nonlinear, and subject to change. Second, IearrHﬁ beg'””'r?g* the two approaches started to d|fferent|a_;1te by_ t_he
way the actions were generated. HDP and the adaptive critics

takes place “on-the-fly” while interacting with the environment, . o ) .
Third, even though measurements from the environment é?elgeneral train a network to associate input states with action
X ues. On the other hand, TD-based Gammon programs, as

available from one decision and control step to the next, a fingt i : .
I[J as@-learning, opted for search algorithms to determine the

outcome of the learning process from a generated sequencé'G . = . -
gp g g Imal moves and, hence, avoid additional error during the ini-

decisions and controls may come as a delayed signal in onlyt Fact work traini ith ) id f h d
indicative “win” or “loose” format. 1al action network training, with a price paid for search speed.

Existing adaptive critic designs [26] can be categorized as:

Dynamic programming has been applied in different f|eldf%] DP: 2) dual heuristic dynamic programming (DHP): and 3)

of engineering, operations research, economics, and so on . S X : :
many years [2], [5], [6], [22]. It provides truly optimal solu-9 obalized dual heuristic dynamic programming (GDHP). Vari-
oy jions from these three basic design paradigms are also avail-

tions to nonlinear stochastic dynamic systems. However, it3 i :
y y able, such as action dependent (AD) versions of the above ar-

chitectures. AD refers to the fact that the action value is an

. . , additional input to the critic network. Action dependent vari-
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on-line learning system is most relevant to ADHDP. Once agait Primary

the basic idea in adaptive critic design is to adapt the weights Reinforcement
the critic network to make the approximating functioh,sat- X g s
isfy the modified Bellman equation. In this framework, insteac i
of finding the exact minimum, an approximate solution is pro- /

; ; ; iR X() Action . Critie Jit i
vided for solving the following equation: Netwosk| aft) | Network é=

J(t-1)-r(t)

~

JH(X(@®) = ;&itr)l{J* (X(t+1)+g(X(#), X(t+1)) —Uo}

1)
whereg(X (¢), X (t+1)) is the immediate costincurred ly¢)
at timet¢, and Uy is a heuristic term used to balance [24]. To o ) ) ]
adapt/(X (1) in the critc network,the target on the right-hand % I Scherat. dagram for implementatons of newl aynanic
side of (1) must be knowa priori. To do so, one may wait for a the paths for parameter tuning.
time step until the next input becomes available. Consequently,
J(X(t + 1)) can be calculated by using the critic network at

timet¢ + 1. Another approach is to usenaodel networkwhich

Uet)

Our proposed approach in this paper is closely related to
. . : ; ArDHDP. One major difference is that we do not use a system
is a pretrained network to approximate the system dynamics. In .

model to predict the future system state value and consequently

principle, such a network can be trained on-line. S .
One major difference between HDP and DHP is within thtebe cost-to-o for the next time step. Rather, we store the

objective of the critic network. In HDP, the critic networkggi;:ﬁuti‘é ;/:r&jeér;?%?ftfztra;nvgghutszz Cirl:rtr;ii\r/]alu\?\,/ewﬁa\(/::nthus
outputsJ directly, while DHP estimates the derivative dgf b 9.

with respect to its input vector. Since DHP builds denvatwres'o'ved the.c.illlemma Of. either ignoring .taé(t + 1)/8WC(?).
. i . . . term by sacrificing learning accuracy or including an additional
terms over time directly, it reduces the probability of error in- : : .
stem model network by introducing more computation

troduced by backpropagation. GDHP is a combination of D : . N
urden. In this paper, we present a systematic examination on

and HDP, approximating both( X (¢)) andaJ(X (t))/dX (¢) ; ; .
simultaneously with the critic network. Therefore, the perc-)ur proposed neural dynamic programming (NDP) design that

formance of GDHP is expected to be superior to both D Bcludes two networks, thg action apd Fhe critic, as buyld_mg
4ocks. In the next two sections, we first introduce the building

and HDP. However, the complexities of computation al : ;
implementation are high for GDHP. The second derivatir\]/%mkS of the proposed NDP implementations and then the

terms, 927(X (£))/0X (£)0w.(#), need to be calculated atassomated on-line learning algorithms. In Section Ill, we

every time step. Analysis and simulation results in [12] artDJOVide evaluations on the on-line NDP designs for a single
y €p- YSIS . cart-pole balancing problem. Section IV gives evaluations of
[13] are consistent with this observation.

Adaptive critic designs such as HDP, DHP, and GDHP, as w PP. deS|gns n a .pendullum swing up and bglgncmg tgsk.
ection V includes simulation results of a more difficult on-line

taosiatgg::1g(;:)t:gglgrip[elg?el:ti%eprialomn:n?z;\i/oengeg;acﬁggende:\?v:rrlléggfmng control problem, namely the triple-link inverted pen-
of HDP and ADHDP are used to approximateTo obtain the ulum balancing task. After the presentation on NDP designs,

. ) . Igorithms, and performance evaluations, we try to provide
value of / at time + 1, the states or/and actions are pre.d'Ctegome initial results on analytical insight of our on-line NDP

%Sesigns using stochastic approximation argument. Finally,

a section on conclusions and discussions is provided where
model network outputs( (¢ 4+ 1). In [12], the model network P

was trained off-line. Results from [12] show that GDHP ange also provide some preliminary findings on improving the

DHP are better designs than the HDP and ADHDP for the auc_alabnlty of our proposed NDP designs.

tolanding problem. The auto-landers trained with wind shear for
GDHP and DHP successfully landed 73% of all 600 trials while Il. A GENERAL FRAMEWORK FOR LEARNING THROUGH
those for HDP and ADHDP were below 50%. ASSOCIATION AND REINFORCEMENT

From the previous discussions, we can also categorize adapFig. 1 is a schematic diagram of our proposed on-line learning
tive critic designs by whether or not a model was used in tleentrol scheme. The binary reinforcement signd) is pro-
learner, as shown in [26]. Note that in adaptive critic designgided from the external environment and may be as simple as
there are two partial derivative terms in the backpropagatieither a “0” or a “-1” corresponding to “success” or “failure,”
path from the Bellman equation. They a¥é(t)/dW.(t) and respectively.
aJ(t + 1)/0W.(t). When adaptive critic designs were imple- In our on-line learning control design, the controller is
mented without a model network (i.e., two-network design), tHeaive” when it just starts to control, namely the action network
second partial derivative term was simply ignored. The pri@nd the critic network are both randomly initialized in their
paid for omitting this term can be high. Results in [12] and [13]yveights/parameters. Once a system state is observed, an action
seem to agree with this observation. In later implementationdll be subsequently produced based on the parameters in the
such as DHP and GDHP, a model network was employed to tad&tion network. A “better” control value under the specific
into account theé?.J (¢ + 1)/0W.(t) term. system state will lead to a more balanced equation of the

plant dynamics for a given staté(¢) and actionu(¢), and the
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principle of optimality. This set of system operations will be
reinforced through memory or association between states and
control output in the action network. Otherwise, the control Y1
value will be adjusted through tuning the weights in the action
network in order to make the equation of the principle of X,
optimality more balanced.

To be more quantitative, consider the critic network as de-
picted in Fig. 1. The output of the critic element, théunction, Xn
approximates the discounted total reward-to-go. Specifically, it
approximatedk(t) at timet given by u

1
wc( )

Rty=r(t+1)+ar(t+2)+-- ) o
where R(t) is the future accumulative reward-to-go value "ﬁls?r.]; afingomgf ddﬁg\r,\‘;‘gggc\’l\’/ittuegnmep'rﬁ;“dee”ﬁg;gffa”0”“”95“ critic network
time ¢, « is a discount factor for the infinite-horizon problem

0< fi < 1% We thavelusedfc =0.95 'P Oll” |m;t)ltemer1tat|0ns The weights in the action network are updated to minimize the
r(t + 1) is the external reinforcement value at time following performance error measure:

A. The Critic Network E,(t) = L ei(t). 9)

The critic network is used to provid&(#) as an approximate The update algorithm is then similar to the one in the critic net-
of R(t) in (2). We define the prediction error for the critic elework. By a gradient descent rule
ment as

Walt + 1) = wa(t) + Awa(?) (10)
e(t)=alJ(t) - [J(t—1)—r(t)] 3)
Awa (1) =1 (1) [_ ngv gﬂ (11)

and the objective function to be minimized in the critic network
is OE,(t)  OE,(t) dJ(t) Ou(t)

ow,(t)  9J(t) Ou(t) Ow,(t)
ez (t). )

wherel,(t) > 0 is the learning rate of the action network at
The weight update rule for the critic network is a gradienf'met which usually decreases with time to a small value, and
based adaptation given by

« IS the weight vector in the action network.

12)
E.(t) =

(S

C. On-Line Learning Algorithms

we(t+1) = ()+cht) () _ . o ,
Our on-line learning configuration introduced above involves
Aw.(t) =1.( [ )} (6) two major components in the learning system, namely the ac-
aWc (t) tion network and the critic network. In the following, we devise
OE.(t) [ QE.(t) aJ(t . !earning algorithms and elaborate on how learning takes place
Fwe(t) [ 9I(t) dw.(t )} (7) in each of the two modules.

In our NDP design, both the action network and the critic
wherel.(t) > 0is the learning rate of the critic network at timenetwork are nonlinear multilayer feedforward networks. In our
t, which usually decreases with time to a small value, ands designs, one hidden layer is used in each network. The neural

the weight vector in the critic network. network structure for the nonlinear multilayer critic network is
shown in Fig. 2.
B. The Action Network In the critic network, the outpuf(¢) will be of the form
The principle in adapting the action network is to indirectly N
backpropagate the error between the desired ultimate objective, J(t) =" wP(O)pi(t) (13)
denoted byl/., and the approximatg function from the critic =1
network. Since we have defined “0” as the reinforcement signal 1—exp2® )
for “success,”U.. is set to “0” in our design paradigm and in pi(t) = T exp @@’ i=1,---, Ny (14)
our following case studies. In the action network, the state mea- P
surements are used as inputs to create a control as the output of sy (1) .
the network. In turn, the action network can be implemented by Z wcw i=1 - Ny (%)
either a linear or a nonlinear network, depending on the com-
plexity of the problem. The weight updating in the action newhere
work can be formulated as follows. Let i ith hidden node input of the critic network;
Di corresponding output of the hidden node;

eqo(t) = J(t) — U(t). 8) Ny, total number of hidden nodes in the critic network;
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n+1 total number of inputs into the critic network in- In the above equationg)./(¢)/Ou(t) is obtained by
cluding the analog action valugt) from the action changing variables and by chain rule. The result is the
network. summation termwéfﬁ)n 41 IS the weight associated with
By applying the chain rule, the adaptation of the critic network the input element from the action network.
is summarized as follows. 2) Aw (input to hidden layer)
@ (hi
1) Aw.” (hidden to output layer) " OE.(t)
Awi/(t) =1,(t) | — , (28)
(2) aEc(t) “ aw((ll) (t)
Awg () =Le(t) | -5y~ (16) v
dwe;’(t) OE,(t)  DE.(t) 9J(t) du(t) du(t) dgi(t) Ohi(t)
OE.(t) _OE.(t) 9J(t) owD )y 0J(t) dult) du(t) dgi(t) Ohi(t) guwlt (r)

=ae.(Hpi(t).  (17)

awP () 9I1) o) (29)
2) Awt (input to hidden layer) =ca(t) [3 (1-u*(1))] wg)(t) [3 (1-gZ®)] 2;(®)
i
Aw® () =1.(¢) |~ 2EeD) (18) S [P0 a-pe) e, 0] @GO
Cij (1) .
8wcij (t) =1
OE.(t)  OE.(t) 8J(t) Opi(t) Oq(t) Normalization is performed in both networks to confine the

= 19 i ' i
ang) ) 3J(t) Ipi(t) Dgi(t) ang)(t) (19) values of the weights into some appropriate range by
we(t) + Aw.(t)

= ae (Hw () [§ (1-pi (®)] z;(t).  (20) welt+1) = lw.(t) + Aw. (8|

Now, let us investigate the adaptation in the action network, Wa(t) + Aw,(t)
which is implemented by a feedforward network similar to the [Wea(t) + Aw, (8)]]1

one in Fig. 2 e>_(cept that_ the inputs are biz)eneasured_states In implementation, (17) and (20) are used to update the
and the output is the action(t). The associated equations forvveights in the critic network and (27) and (30) are used to

(1)

wa(t+1) = (32)

the action network are update the weights in the action network.
1—exp¥®
u(t) = 1+ exp—® (21) [ll. PERFORMANCEEVALUATION FOR CASE STUDY ONE
N, The proposed NDP design has been implemented on a single
v(t) = Z wff) (t)g:(t) (22) cart-pole problem. To begin with, the self-learning controller
=1 has no prior knowledge about the plant but only on-line mea-
1 — excp—Ti(® surements. The objective is to balance a single pole mounted
gi(t) = —p_7 i=1,..., Ny (23) ona cart, which can move either to the right or to the left on a
14 exp"i(®) bounded, horizontal track. The goal for the learning controller

n is to provide a force (applied to the cart) of a fixed magnitude
hi(t) =Y wl®z;(t), i=1,...,Nn (24) in either the right or the left direction so that the pole stands
J=1 balanced and avoids hitting the track boundaries. The controller

wherew is the input to the action node, age and h; are the receives reinforce_ment only after the pole has fallen.
output and the input of the hidden nodes of the action network,'” order to prqwde the Iearr_n.ng controller measured states as
respectively. Since the action network inputs the state measuPRUts to the action and the critic networks, the cart-pole system
ments only, there is non(+ 1)th term in (24) as in the critic Was simulated on ad|g|tal c_qmputer using a detailed model that
network [see (15) for comparison]. The update rule for the now_cludes all of the nonlinearities and reactive forces of the phys-

linear multilayer action network also contains two sets of equi@! System such as frictions. Note that these simulated states
would be the measured ones in real-time applications.

tions.
1) Aw? (hidden to output layer) A. The Cart-Pole Balancing Problem
Th rt-pol m inth rren is th m
@) (8) =10 —aﬁ;)((tt)) 25 g Oiec?nt[gi e system used in the current study is the sia eas
OE,(t) _ OE,(t) 0J(t) du(t) dvu(t) (26) 29 9siné +cosb[—I" — mlf? sin 8 + pi. sgr(i)] — umile
8w(g)(t) 9J(t) du(t) du(t) awtg)(t) dt2? - 4 mcos?d
Ny, <§ B me. + m)
=co(t) [5 (1 — ()] @ () Z (33)
=1 2

Pr F+ml[f?sinf — 6 cosb] — piesgn(i)
Ju@®L (1 -pe) e 0] @) gz = e (34)
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where TABLE |
g 9.8 m/<. acceleration due to gravity; SUMMARY OF PARAMETERS USED IN OBTAINING THE RESULTS
) ’ ! GIVEN IN TABLE I

m. 1.0 kg, mass of cart;

m 0.1 kg, mass of pole;

l 0.5 m, half-pole length;
e  0.0005, coefficient of friction of cart on track; Value 0.3 | 0.3 |0.005 | 0.005
tp  0.000002, coefficient of fr_iction of pole on cart; Parameter | N. | N, | T. T, | N,
F 410 Newtons, force applied to cart’s center of mass;

Parameter | 1.(0) | 1,(0) | L(f) | L(f) | *

Value 50 100 { 0.05 | 0.005| 6

1, ifz>0
. TABLE I
Sgl’(a:) = 07 ifx =20 PERFORMANCE EVALUATION OF NDP LEARNING CONTROLLER WHEN
—1. ifz<0 BALANCING A CART-POLE SYSTEM. THE SECOND COLUMN REPRESENTS THE
s .

PERCENTAGE OFSUCCESSFULRUNS OUT OF 100. THE THIRD COLUMN

. . . . DEPICTS THEAVERAGE NUMBER OF TRIALS IT TOOK TO LEARN TO BALANCE
The nonlinear differential equations (33) and (34) are numeri- THE CART-POLE. THE AVERAGE IS TAKEN OVER THE SUCCESSFULRUNS

cally solved by a fourth-order Runge—Kutta method. This model

provides four state variables: j¢), position of the cart on the Noj .
. . oise type success rate | # of trials

track; 2)6(t), angle of the pole with respect to the vertical po-

sition; 3)4(t), cart velocity; 4)é(t), angular velocity. Noise free 100% 6
In our current study a run consists of a maximum of 1000 Uniform 5% actuator 100% 3

consecutive trials. It is considered successful if the last trial

(trial number less than 1000) of the run has lasted 600 000 time ~_ Uniform 10% actuator 100% 14

steps. Otherwise, if the controller is unable to learn to balance Uniform 5% sensor 100% 32

the cart-pole within 1000 trials (i.e., none of the 1000 trials has :

lasted over 600 000 time steps), then the run is considered un- Uniform 10% sensor 100% b4

successful. In our simulations, we have used 0.02 s for each Gaussian ¢ = 0.1 sensor 100% 164

time step, and a trial is a complete process from start to fall.  q,ussian 62 = 0.2 sensor 100% 193

A pole is considered fallen when the pole is outside the range of
[—12°, 12°] and/or the cart is beyond the range 6.4, 2.4] m

in reference to the central position on the track. Note that &l ks were updated for at maat, and N, times, respectively
though the force” applied to the cart is binary, the contudlt)  stopped once the internal training error threshblcand 7,
fed into the critic network as shown in Fig. 1 is continuous. have peen met.
] ) To be more realistic, we have added both sensor and actuator

B. Simulation Results noise to the state measurements and the action network output.

Several experiments were conducted to evaluate the effecti@pecifically, we implemented the actuator noise throu@h =
ness of our learning control designs. The parameters used in#i& + o, wherep is a uniformly distributed random variable. For
simulations are summarized in Table | with the proper notatiottse sensor noise, we experimented with adding both uniform and

defined in the following: Gaussian random variables to the angle measurenfeitise
1.(0) initial learning rate of the critic network; uniform state sensor noise was implemented thraugh(1 +
1,(0) initial learning rate of the action network; noise percentagey #. Gaussian sensor noise was zero mean
I.(t) learning rate of the critic network at timewhich with specified variance.

is decreased by 0.05 every five time steps until it Our proposed configuration of neural dynamic programming
reaches 0.005 and it staysiatf) = 0.005 there- has been evaluated and the results are summarized in Table II.
after; The simulation results summarized in Table Il were obtained
I,(t) learning rate of the action network at timavhich through averaged runs. Specifically, 100 runs were performed
is decreased by 0.05 every five time steps until tb obtain the results reported here. Each run was initialized to
reaches 0.005 and it staysiatf) = 0.005 there- random conditions in terms of network weights. If a run is suc-

after; cessful, the number of trials it took to balance the cart-pole is
N, internal cycle of the critic network; then recorded. The number of trials listed in the table corre-
N, internal cycle of the action network; sponds to the one averaged over all of the successful runs. There-
T, internal training error threshold for the critic net-fore there is a need to record the percentage of successful runs

work; out of 100. This number is also recorded in the table. A good
T, internal training error threshold for the action neteonfiguration is the one with a high percentage of successful

work; runs as well as a low average number of trials needed to learn to
Ny, number of hidden nodes. perform the balancing task.

Note that the weights in the action and the critic networks Fig. 3 shows a typical movement or trajectory of the pen-
were trained using their internal cycled,, and N., respec- dulum angle under NDP controller for a successful learning
tively. That is, within each time step the weights of the two netrial. The system under consideration is not subject to any noise.
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A typical angle movement TABLE Il

PERFORMANCEEVALUATION OF NDP LEARNING CONTROLLER TO SWING UP
AND THEN BALANCE A PENDULUM. THE SECOND COLUMN REPRESENTS THE
PERCENTAGE OFSUCCESSFULRUNS OUT OF60. THE THIRD COLUMN DEPICTS
THE AVERAGE NUMBER OF TRIALS IT TOOK TO LEARNING TO SUCCESSFULLY
PERFORM THETASK. THE AVERAGE IS TAKEN OVER THE SUCCESSFULRUNS

reinforcement implementation | success rate | # of trials
| Setting 1 100% 42
Setting 2 96% 3.5

wherem = 1/3 and! = 3/2 are the mass and length of the
pendulum bar, respectively, apd= 9.8 is the gravity. The ac-
tion is the angular acceleratidnand it is bounded between3
provs w0 and 3, namelyFi;, = —3, andF,,,x = 3. A control action

Time Steps is applied every four time steps. The system states are the cur-

] ) ) ) o rent anglef and the angular velocity. This task requires the
E('J%tf’(')lIefgﬁé%a:r?;gﬁtgeg‘;gg‘é;'rr‘]%g:f’ccessm' learning trial for the NDR o1 to not only swing up the bar but also to balance it at
the top position. The pendulum initially sits still @t= . This
task is considered difficult in the sense that 1) no closed-form

Degrees

AL : oo P : f analytical solution exists for the optimal solution and complex
: _ numerical methods are required to compute it and 2) the max-
b - 4 S R imum and minimum angular acceleration values are not strong
enough to move the pendulum straight up from the starting state
T : fod] without first creating angular momentum [15].

In this study, a run consists of a maximum of 100 consecutive
trials. Itis considered successful if the last trial (trial number less
than 100) of the run has lasted 800 time steps (with a step size
of 0.05 s). Otherwise, if the NDP controller is unable to swing
up and keep the pendulum balanced at the top within 100 trials
‘ (i.e., none of the 100 trails has lasted over 800 time steps), then
. i = . ; the run is considered unsuccessful. In our simulations, a trial
S e R is either terminated at the end of the 800 time steps or when

the angular velocity of the pendulum is greater tfzan i.e.,
Fig. 4. Histogram of angle variations under the control of NDP on-lineapy > 2.

learning mechanism in the single cart-pole problem. The system is free of . . . . .
noise iﬁ’this case. 9 pole p Y In the following, we studied two implementation scenarios

with different settings in reinforcement signalIn Setting 1,
7 = 0 when the angle displacement is within°9@om the po-

[}
degrees

Fig. 4 represents a summary of typical statistics of the learniggion of ¢ = 0; » = —0.4 when the angle is in the rest half

process in histograms. It contains vertical angle histograggine plane; and = —1 when the angular velocity > 2.

when the system Iearr_13 to bal_ance the (_:art-pole using idﬁ?'Setting 2,7 = 0 when the angle displacement is within°10

state measurements without noise corruption. from the position 0B = 0; » = —0.4 when the angle is in the
remaining area of the plane; and= —1 when the angular ve-
locity w > 2.

IV. PERFORMANCEEVALUATION FOR CASE STUDY TWo Our proposed NDP configuration is then used to perform

We now examine the performance of the proposed NDP d,’é.e above described task. We have used the same Configura-
sign in a pendulum swing up and balancing task. The case unti@f and the same learning parameters as those in the first case
study is identical to the one in [15]. study. NDP controller performance is summarized in Table III.

The pendulum is held by one end and can swing in a verticH€ simulation results summarized in the table were obtained
plane. The pendulum is actuated by a motor that applied a tordE2ugh averaged runs. Specifically, 60 runs were performed to
at the hanging point_ The dynamics of the pendu|um is as f&btaln the results reported here. Note that we have used more

lows: runs than that in [15] (which was 36) to generate the final re-
sult statistics. But we have kept every other simulation condi-
dw 3 . tion the same as that in the paper [15]. Each run was initialized
dt  4mli? (£ 4 migsin()) (35) to# = = andw = 0. The number of trials listed in the table
46 corresponds to the one averaged over all of the successful runs.

a Y (36) The percentage of successful runs out of 60 was also recorded
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Fig. 6. Definition of notation used in the system equations for the triple-link

time steps inverted pendulum problem.

Fig.5. Atypical angle trajectory during a successful learning trial for the ND,
controller in the pendulum swing up and balancing tdsKt the entire trial.

Where the components are shown in the equation at the bottom

Right portion of the entire trajectory to show the stabilization process in detaff the page. Note that the's in L(g, «) are Coulomb friction
coefficients for links and they are not linearizable [7]. In our

in the table. Fig. 5 shows a typical trajectory of the pendulusimulations., = 0.07, anduy = p2 = pg = 0.003. The A;

angle under NDP controller for a successful learning trial. Thggefficients are system constants and are given in Table IV.

trajectory is characteristic for both Setting 1 and Setting 2.
g
V. PERFORMANCEEVALUATION FOR CASE STUDY THREE M

The NDP design introduced in the previous sections is now"
applied to a more complex on-line learning control problem thaﬁ2
the single cart-pole balancing task, namely, the triple-link in- 3
verted pendulum problem with single control input. We have
successfully implemented our proposed NDP configuration on
this problem. The details of the implementation and results wifl
be given in the following subsections. s

A. Triple-Link Inverted Pendulum with Single Control Input

The system model for the triple-link problem is the same eis;
that in [7]. Fig. 6 depicts the notation used in the state equatioB§

The parameters used in the system are defined as follows:

9.8 m/s’, acceleration due to gravity;

1.014 kg, mass of the cart;

0.4506 kg, mass of the first link;

0.219 kg, mass of the second link;

0.0568 kg, mass of the third link;

0.37 m, the length from the mount joint to the center
of gravity of the first link;

0.3 m, the length from the first joint to the center of

gravity of the second link;

0.05 m, the length from the second joint to the center
of gravity of the third link;

0.43 m, total length of the first link;

0.33 m, total length of the second link;

0.13 m, total length of the third link;

that govern the system. , I 0.0042 kgm?, mass moment of inertia of the first
The equation governing the system is link about its center of gravity:
d?q dq\ dq I 0.0012 kgm?, mass moment of inertia of the second
) diz -G <q’ %) dt Hlg)+ Ligw)  (37) link about its center of gravity;
r A Az cos(by) Az cos(z) Ay cos(bs)
F(q) _ Ag COS(91) AlO All COS(91 — 92) A12 COS(91 — 93)
Alg COS(QQ) Alg COS(91 — 92) AQO Agl COS(92 — 93)
_AQg COS(93) AQQ COS(91 — 93) Ago COS(92 — 93) A31
_A;) AG 5111(91)91 A7 8111(92)92 Ag 8111(93)93

aQ @ _ |0 A
& dt ] 0 Ay sin(91 — 92)91 + Ags

A14 sin(91 — 92)92 + A15

Ajgsin(f; — 93)93
A25 sin(92 — 93)93 + AQG

L O Ass Sin(91 — 93)91 Asy sin(92 — 93)92 + Asg Aso
M 0 Kou— sgn@)pa.Asr
01 Az 8111(91) — ng(el)ulAgg
q 92 9 ((J) A27 5111(92) 9 ((L U’) _ Sgr(92)u2A39
L 63 Aszysin(6s) — sgn(f3) s Aag
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TABLE IV TABLE V
SYSTEM CONSTANTS FOR THETRIPLE LINK INVERTED PENDULUM PROBLEM SUMMARY OF PARAMETERS USED IN OBTAINING THE RESULTS GIVEN IN
TABLE VI FOR THETRIPLE-LINK INVERTED PENDULUM PROBLEM
Constant | Value Constant | Value
A M +m1 +mg +ms Az malsLa Parameter | [.(0) | 1,(0) | I(f) | W(f) | *
Az maly + (mz +ms)La Az —(maly + maLo)La Value 0.8 | 0.8 |0.001|0.001]| *
As mals +mala Aas G Parameter | No | Na | T. | Ta | Na
Ay msl3 Aas Co+Cs
A c. Ans malaLs Value | 10 | 200 | 0.01 |0.001 | 14
As —maly — (m2 +m3)Ls Age —Cs
Ar =(maly +maly) Azt —9(mal +msLz) There are eight state variables in this model: ), position of
As —mals Ass mala the cart on the track; 2 (¢), vertical angle of the first link joint
Ao maly + (ma + ms) L Ass maslsLy to the cart; 3p,(¢), vertical angle of the second link joint to the
. I+ mal} + (ma +ma) L || Aso malsLa first link; 4) 65(t), vertical angle of the third link joint to the
An (maly + msL2) I A I + mal2 second link; 5)¢(t), cart velocity; 6)¢; (¢), angular velocity of
Au malsLy As Cs el(t);_7) 6>(t), angular velocity ob»(¢); and 8)85(¢), angular
Az C1+Ce Asz —mslsLy velocity Of.93 (t) ] .
In the triple-link inverted pendulum problem, a run consists
A1q (mal2 + maL2) Ly Aszq —gmsls . . . .. .
of a maximum of 3000 consecutive trials. Similar to the single
AIS —Cz A35 —m3l3L2 . . . .
cart-pole balancing problem, a run is considered successful if
A malaln Aso -G the last trial of the run lasts 600 000 time steps. However, now a
A7 —g(maly + maLy +msLy) || Asr 13 unit time step is 5 ms instead of 20 ms as in the single cart-pole
A mals +msLe Ass 0.506 problem. The constraints for the reinforcement learning are: 1)
Aro (maly +maL2)ln Azo 0.219 the cart track extends 1.0 m to both ends from the center po-
Aso I + m3L3 + myl3 Ago 0.568 sition; 2) the voltage applied to the motor is within 30, 30]
V range; and 3) each link angle should be within the range of
I3 0.000 106 09 kgm?, mass moment of inertia of the[_zoc.)’. 20°] \.N'th respectto the vgrtl_cal axis. I_n ours_lmulgnons,
S . o condition 2 is assured to be satisfied by using a sigmoid func-
third link about its center of gravity; : ; i
e AR L tion at the output of the action node. For conditions 1) and 3),
C. 5.5 Nms, dynamic friction coefficient between the, . ) : . T
i if either one fails or both fail, the system provides an indicative
cart and the track; . i X
. e - signalr = —1 at the moment of failure, otherwise= 0 all the
Ch 0.000268 75 Nms, dynamic friction coefficient for . .
the first link: t!me. Several experiments were conducted to eyaluate the effec-
Oy 0.000268 75 Nms, dynamic friction coefficient for tiveness of the proposed_ Iearnmg control designs. The results
L are reported in the following section.
the second link;
Cs 0.000 268 75 Nms, dynamic friction coefficient for ) )
the third link. B. Simulation Results

The only controlu (in volts) generated by the action network is  Note that the triple-link system is highly unstable. To see this,
converted into force by an analog amplifier through a convee positive eigenvalues of the linearized system model are far
sion gaink’; (in Newtons/volt). In simulationsi; = 24.7125  away from zero (the largest is around 10.0). In obtaining the
N/V. Eachlink can only rotate in the vertical plane about the axj;earized system model, the Coulomb friction coefficients are
of a position sensor fixed to the top of each link. The samplingssumed to be negligible. Besides, the system dynamics changes
time interval is chosen to be 5 ms. From the nonlinear dynamst. |t requires a sampling time below 10 ms.
ical equation in (37), the state-space model can be described agjnce the analog output from the action network is directly
follows: fed into the system this time, the controller is more sensitive to
SN the actuator noise than the one in the single cart-pole where a
Q1) = F(Q), u(?)) (38) binary control is applied. Experiments conducted in this paper
with include evaluations of NDP controller performance under uni-
form actuator noise, uniform or Gaussian sensor noise, and the
F(Q(#), u(®) case without noise.
_ {04“ Lysa } O(t) Before the presentation of our results, the learning parame-
O4xa —F7HQ()G(Q(1)) ters are summarized in Table V. Simulation results are tabulated
0 in Table VI. Conventions such as noise type and how they are
+ { ax4 } included in the simulations are described in Section I1I-B.
—FHQ)[H Q) —L(Q(t), w(t))] Fig. 7 shows typical angle trajectories of the triple-link
and angles under NDP control for a successful learning trial. The
. . . T system under consideration is not subject to any noise. The
Qt) = [x(t) 01(¢) 02(t) 03(t) () 61 () 62(1) 93(0} : corresponding control force trajectory is also given in Fig. 8.
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TABLE VI
PERFORMANCE EVALUATION OF NDP LEARNING CONTROLLER WHEN
BALANCING A TRIPLE-LINK INVERTED PENDULUM. THE SECOND COLUMN
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force applied to the center of the cart

600

REPRESENTS THEPERCENTAGE OFSUCCESSFULRUNS ouT OF100. THE
THIRD COLUMN DEPICTS THEAVERAGE NUMBER OF TRIALS IT TOOK TO
LEARNING TO BALANCE THE CART POLE. THE AVERAGE IS TAKEN OVER a0or
THE SUCCESSFULRUNS
200
Noise type success rate | # of trials é o
H
z
None 97% 1194
_oo0f
Uniform 5% actuator 92% 1239
a0l
Uniform 10% actuator 84% 1852
soob
Uniform 5% sensor on 6 89% 1317
Uniform 10% sensor on 6; 80% 1712 B TR TR " R N
Gaussian sensor on f; variance = 0.1 85% 1508 Fig. 8. The force (in Newton) trajectory, which is converted from control
a . 6 . — 02 76% 1993 into voltage, applied to the center of the cart for balancing the triple-link inverted
4ussian Sensor on v variance = U. 0 pendulum, corresponding to the angle trajectory in Fig. 7.
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Fig. 7. Typical angle trajectories of the triple-link angles during a successfuld- 9.  Histogram of the triple-link angle variations when the system is free of

learning trial using on-line NDP control when the system is free of noise. ~ NOIS€.

élgll_%serror function that changes from one time step to the next.
erefore, the convergence argument for the steepest descent
malgorithm does not hold valid for any of the two networks,

The results presented in this case study have again de :on or critic. This results in a simulation approach to evaluate
strated the validity of the proposed NDP designs. The maj f Hic. 4 his resuts | imurat bpproa val
e cost-to-go function/ for a given control action:. The

characteristics of the learning process for this more compl )r(1 line learning tak | iming at iteratively imoroving th
system are still similar to the single cart-pole problem in mangl -line fearning takes place a g atiteralively improving the
ontrol policies based on simulation outcomes. This creates

ways. Itis worth mentioning that the NDP controlled angle vari- . X e L
y g 9 nalytical and computational difficulties that do not arise in a

ations are significantly smaller than those using nonlinear coﬁore tpical neural-network training context
trol system design as in [7]. yp 9 ¥

Some analytical results in terms of approximatihfunction
was obtained by Tsitsiklis [20] where a linear in parameter func-
tion approximator was used to approximate fhieinction. The
limit of convergence was characterized as the solution to a set
This section is dedicated to expositions of analytical propesf interpretable linear equations, and a bound is placed on the
ties of the on-line learning algorithms in the context of NDResulting approximation error.
It is important to note that in contrast to usual neural-network It is worth pointing out that the existing implementations of
applications, there is no readily available training sets ®fDP are usually computationally very intensive [4], and often
input—output pairs to be used for approximatifigin the sense require a considerable amount of trial and error. Most of the
of least squares fit in NDP applications. Both the control actiamomputations and experimentations with different approaches
» and the approximated function are updated according towere conducted off-line.

Fig. 9 represents a summary of statistics of the learning proc
in histograms.

VI. ANALYTICAL CHARACTERISTICS OFON-LINE NDP
LEARNING PROCESS
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In the following, we try to provide some analytical insighfThe convergence with probability one in (44) is also called con-
on the on-line learning process for our proposed NDP designergence almost truly.
Specifically we will use the stochastic approximation argument In this paper, the Robbins—Monro algorithmis applied to opti-
to reveal the asymptotic performance of our on-line NDRization problems [10]. In that setting(w) = 8E /3w, where
learning algorithms in an averaged sense for the action and #iés an objective function to be optimized. # has a local op-

critic networks under certain conditions. timum atw*, g(w) will satisfy the condition (C1) locally at*.
) o ) If £ has a quadratic forng(w) will satisfy the condition (C1)
A. Stochastic Approximation Algorithms globally.

The original work in recursive stochastic algorithms was in- ) o )
troduced by Robbins and Monro, who developed and analyzZ8d Convergence in Statistical Aege for theAction and the
a recursive procedure for finding the root of a real-valued fun€itic Networks
tion g(w) of a real variablev [14]. The function is not known,  Neural dynamic programming is still in its early stage of de-
but noise-corrupted observations could be taken at values of/elopment. The problem is not trivial due to several consecutive
selected by the experimenter. learning segments being updated simultaneously. A practically
A function g(w) with the formg(w) = Ez[f(w)] (Ex[]is effective on-line learning mechanism and a step by step analyt-
the expectation operator) is called a regression functigit®of, ical guide for the learning process do not co-exist at this time.
and converselyf(w) is called a sample function @fw). The This paper is dedicated to reliable implementations of NDP al-
following conditions are needed to obtain the Robbins—Monggorithms for solving a general class of on-line learning control
algorithm [14]. problem. As demonstrated in previous sections, experimental
(C1) g(w) has a single roow*, g(w*) = 0, and results in this direction are very encouraging. In the present sec-
tion, we try to provide some asymptotic convergence results for
) each component of the NDP system. The Robbins—Monro algo-
glw) >0 if w>w" rithm provided in the previous section is the main tool to obtain
This is assumed with little loss of generality since mosesults in this regard. Throughout this paper, we have implied
functions of a single root not satisfying this conditiorthat the state measurements are samples of a continuous state
can be made to do so by multiplying the function bgpace. Specifically we will assume without loss of generality
—1. that the inputX; € & C R"™ has discrete probability density
(C2) The variance of (w) from g(w) is finite p(X) =Y, p;i6(X — X;), wheres() is the delta function.
9 9 In the following, we analyze one component of the NDP
o*(w) = Balg(w) = f(w)]” < oo. (39) system at a time. When one component (e.g., the action
(C3) network) is under consideration, the other component (e.g.,
the critic network) is considered to have completed learning,
|lg(w)| < Bilw —w"| + Bo < oc. (40)  hamely their weights do not change any more.
To examine the learning process taking place in the action
network, we define the following objective function for the ac-

glw) <0 if w<w

(C3) is a very mild condition. The values Bf andB,
need not be known to prove the validity of the algo-,
rithm. As long as the root lies in some finite intervaliON Network:
the existence af3; and B, can always be assumed. E,=1 Zpi['](Xi) AL
If the conditions (C1) through (C3) are satisfied, the algo- .
rithm due to Robbins and Monro can be used to iteratively seek L 5
the rootw* of the functiong(w): = s Ee[(J = Uo)7]. (45)

w(t 4+ 1) = w(t) — 1) flw(t)] (41) Itcan be seen that (45) is an “averaged” error square between
] N ] . the estimated/ and a final desired valu&.. To contrast this
wherel(t) is a sequence of positive numbers which satisfy theytion, (9) is an “instantaneous” error square between the two.

following conditions: To obtain a (local) minimum for the “averaged” error measure in
1) limI(¢t)=0 (45), we can apply the Robbins—Monro algorithm by first taking
t;"o a derivative of this error with respect to the parameters, which
2) Z 1(t) = o0 ) are the weights in the action network in this case. Let
t=0 o =J—U,. (46)
3) ZF(t) < o0. SinceJ is smooth inw,, andw, belongs to a bounded set,
t=0 the derivative ofE, with respect to the weights of the action
Furthermorew(t) will converge towards* in the mean square network is then of the form:
error sense and with probability one, i.e., OF 9¢
: 2 2 —Ex [éa —f’} . (47)
thm Egx [||w(t) —w| ] =0 (43) aw, Ow,,
_ . According to the Robbins—Monro algorithm, the root (can be a
Prob{ Lim w(t) = w } =1 (44)  |ocal root) ofdE, /oW, as a function ofv, can be obtained by
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the following recursive procedure, if the root exists and if themodel. The ADHDP design in adaptive critics either ignores the
step sizd,(t) meets all the requirements described in (42): predictive model that results in nontrivial training errors or in-
96 cludes an additional prediction network that results in additional
%} (48) complexities in learning. Also, our design is robust in the sense
OWa that it is insensitive to parameters such as initial weights in the
Equation (46) may be considered as an instantaneous eaotion and/or critic network, the values for the ultimate objec-
between a sample of thé function and the desired valué.. tive, U,, etc. Key learning parameters are listed clearly in the
Therefore, (48) is equivalent to the update equation for tipaper for reproduction of our NDP design. Second, our NDP
action network given in (10)—(12). From this viewpoint, th&esign has been tested on cases and has shown robustness in
on-line action network updating rule of (10)—(12) is actuallgifferent tasks. The triple-link inverted pendulum balancing is
converging to a (local) minimum of the error square betweendifficult nonlinear control problem in many ways. Our results
the J function and the desired valdé. in a statistical average measured by tightness of the vertical angles to the upright po-
sense. Or in other words, even though (10)-(12) represension is much improved over the traditional nonlinear control
reduction in instantaneous error square at each iterative tisystem designs used in [7]. When compared to the original RL
step, the action network updating rule asymptotically reachesl@signs by Barto [1], our on-line learning mechanism is more ro-
(local) minimum of the statistical average (@f — U/..)2. bust when subject to various noise, faster in learning to perform
By the same token, we can construct a similar framework the task, and requires less number of trials to learn the task. The
describe the convergence of the critic network. Recall that thesigns in [15] generally require more free parameters than our
residual of the principle of optimality equation to be balanceldDP design. Plus, our reinforcement signal is simpler than that
by the critic network is of the following form: in [15]. However our simulation results have demonstrated very
robust performance by the proposed NDP configuration. Third,
ce(t) = al(t) = J(t = 1) +r(t). (49)  the fun%lamental guid)éline Ff)orr':he on-line Iearn?ng algorithms
And the “instantaneous” error square of this residual is given igsthe stochastic gradient. We therefore have an estimate of the
asymptotic convergence property for our proposed on-line NDP
E.(t) = § 2(b). (50)  designs under some conditions in statistical sense. This provides
more insight to the on-line learning NDP designs.
B Next, we would like to share some of our experience on ways
E. = Ex[E] (51) tohandle large scale problems or the issue of scalability in NDP

and assume that the expectation is well defined over the discrg?agn' We developed and tested several designs that included

AR gelf—ganizing map (SOM) prior to the action network. The
staFe measuremg_nts. The dgnvatlveng with respect to the SOM takes the system states as inputs and produces an orga-
weights of the critic network is then of the form

nized or reduced dimension expression of these input states to
oF. de,, be passed onto the action network. In our experiments, we have
=T [ —} ; used standard SOM algorithm developed by Kohonen [9]. The
i ) ) SOM as a state classifier can compress state measurements into
According to the Robbins-Monro algorithm, the root (can be agmajjer set of vectors represented by the weights of the SOM
local root) of 0. /0w as a function ofv. can be obtained by ook On the other hand, it introduces quantization error
the following recursive procedure, if the root exists and if thﬁ1at degrades the overall system performance accordingly. In
step sizd.(¢) meets all the requirements described in (42):  grmg of learning efficiency with the added SOM component,
~ ~ Oe. on one hand it reduces the feature space that the action net-
We(t+1) = we(t) = Le(?) {GC a‘;vj : (53)  work is exposed to and therefore it contributes toward a reduc-
) ) _tion in learning complexity in the action network. But on the
Therefore, (53) is equivalent to the update rule for the CritiGher hand, adding a new network such as SOM (using the stan-

networll: g“’g” in (EI’)_(Z)' From this V|e\|/|vp0|nt, the on-line T”“;gard Kohonen training) can introduce tremendous computation
network update rule of (5)—(7) is actually converging to a (loc urden on the overall learning system.

minimum of the residual square of the equation of the principle To have a more quantitative understanding of the effect of

of optimality in a statistical average sense. SOM on the overall learning system performance, we performed
several learning tasks. First, we studied the system performance
on the single cart-pole problem. We added an SOM network
This paper focuses on providing a systematic treatment right in front of the action network. Refer to Fig. 1, the input
an NDP design paradigm, from architecture, to algorithm, ate the SOM is the stat& (¢) and the weight vectors of the SOM
alytical insights, and case studies. The results presented in tiegome the inputs to the action network. We then performed the
paper represent an effort toward generic and robust implemergame set of experiments as those documented in Table II. When
tions of on-line NDP designs. Our design presented in the pagempared to the results in the table without the SOM element in
has, in principle, advanced in several aspects from the existihg learning system, we have observed much degraded perfor-
results. First, our proposed configuration is simpler than adapance by adding the SOM element. Specifically, we saw a 7.1%
tive critic designs. Even though it is very similar to ADHDP, walecreases in the success rate through the seven different cases
have provided a mechanism that does not require a predict{gvith different noise type), and a 142% increase in the number

Walt +1) = Walt) — Lo(t) [

Instead of the “instantaneous” error square, let

ow,

VII. Di1scussiON ANDCONCLUSION
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of trials needed to learn to balance the single cart-pole. Appagstem performance in a more systematic manner. As foresee-
ently the quantization error and the increased learning burdale goals, for one thing, the learning speed of the SOM can be
from SOM are contributing to this performance degradation. improved potentially, and the overall system design should be

We then performed a similar set of experiments on thested on many more complex systems.

triple-link inverted pendulum. Again, significant performance
degradation was observed. With a closer examination at the
gquantization error, we realized that it was as high as 0.2 rad
which corresponds to about 21t is soon realized that this
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variances in the derivatives of the state measurements. The
imbalance between the original state measurements (such
as the angles) and the derivatives of the angles (the angular
velocity) has created high demand in SOM resolution, or if not, "
significant quantization errors will result. To circumvent this,
we divided the action network inputs into two sections. First,
an SOM is employed to compress the state measurements, [2]
6., 62, and 63, into a finite set of four-dimensional weight 3]
vectors, which forms one set of the inputs to the action network.
The other set of inputs to the action network comes directly 4]
from the derivatives of the state measurements, nanie8, 5
62, 03. With such an implementation, the quantization error
from the SOM is only about 0.04 rad (or, equivalently) on  [6]
average. The overall learning performance was improved also.
Specifically, we only see 3.8% decrease in success rate througjr)
the seven cases when compared to those in Table VI, and only
1.6% increase in the number of trials needed to learn to balanc?B]
the triple-link inverted pendulum.

Note that, we believe there is still room for improving the [©]
quantization error and the learning speed inherent with the SOMO]
network. One interesting observation from our experiments with
SOM is that the learning speed for a controller with the SOM21]
is not that much slower than the one without the SOM, espep 5
cially in a complex task. The effect of reducing learning com-
plexity has surfaced by using SOM as a compressor. It is quit
convincing from our experiments on the single cart-pole tha
the SOM has added a tremendous computation overhead fe]
the overall learning speed, especially for a relatively simplelS]
and low-dimensional problem. However, when one deals withj;g)
a more complex system with more state variables, although the
SOM still introduces computation overhead, its advantage of rd27]
ducing the number of training patterns for the action network
becomes apparent, which as a matter of fact may have reducgd]
the overall learning complexity.

As discussed earlier, a good learning controller should be th%g]
one that learns to perform a task quickly, and also, learns afz0]
most all the time with a high percentage of success rate. Another
factor that may not be explicitly present in the reinforcement[21]
signal is the degree of meeting the performance requirement. In
all case studies, however, it is quite intriguing to see that th&?2l
learning controllers are not only trying to balance the poles, but
also trying to maintain the poles as centered as possible. [23]

In summary, our results are very encouraging toward de-
signing truly automatic and adaptive learning systems. But thi§z4]
paper only represents a start of this highly challenging task.
Many more issues are still open such as how to characteriﬁe

i3]

the overall learning process, instead of isolated and asymptot %5]

guidelines, and how to interpret the controller output and
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