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Abstract— In recent years, approximate policy iteration (API)
has attracted increasing attention in reinforcement learning (RL),
e.g., least-squares policy iteration (LSPI) and its kernelized
version, the kernel-based LSPI algorithm. However, it remains
difficult for API algorithms to obtain near-optimal policies for
Markov decision processes (MDPs) with large or continuous
state spaces. To address this problem, this paper presents a
hierarchical API (HAPI) method with binary-tree state space
decomposition for RL in a class of absorbing MDPs, which
can be formulated as time-optimal learning control tasks. In
the proposed method, after collecting samples adaptively in the
state space of the original MDP, a learning-based decomposition
strategy of sample sets was designed to implement the binary-
tree state space decomposition process. Then, API algorithms
were used on the sample subsets to approximate local optimal
policies of sub-MDPs. The original MDP was decomposed into
a binary-tree structure of absorbing sub-MDPs, constructed
during the learning process, thus, local near-optimal policies were
approximated by API algorithms with reduced complexity and
higher precision. Furthermore, because of the improved quality of
local policies, the combined global policy performed better than
the near-optimal policy obtained by a single API algorithm in the
original MDP. Three learning control problems, including path-
tracking control of a real mobile robot, were studied to evaluate
the performance of the HAPI method. With the same setting
for basis function selection and sample collection, the proposed
HAPI obtained better near-optimal policies than previous API
methods such as LSPI and KLSPI.

Index Terms— Adaptive dynamic programming, approximate
policy iteration, binary-tree, hierarchical reinforcement learning,
Markov decision processes, time-optimal control.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a machine learn-
ing framework for solving sequential decision prob-

lems that can be modeled as Markov decision problems
(MDPs). In recent years, RL has been widely studied in the
neural network community and in operations research [1], [2].
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In RL, the learning agent interacts with an initially unknown
environment and modifies its action policies to maximize its
cumulative payoffs. Thus, RL provides an efficient framework
for solving learning control problems that are difficult or even
impossible for supervised learning and mathematical program-
ming methods. However, despite some empirical successes,
including backgammon [3], job-shop scheduling [4], elevator
scheduling [5], and helicopter flight control [6], it remains
difficult for RL to solve MDPs with large or continuous
spaces. In such cases, many RL algorithms cannot converge
to a good near-optimal policy and require numerous training
samples. RL algorithms have difficulty with dimensionality,
the exponential growth of the number of parameters to be
learned with the size of any compact encoding of system
states [7].

To improve the generalization ability of RL algorithms
requires the study of RL theories and algorithms based
on approximate value functions or policies. Until recently,
the three main categories of approximate RL methods have
included value function approximation (VFA) [8], [9], policy
search [10], and actor-critic methods [11], [12]. Among these
approximate RL methods, VFA has been widely studied.
According to the basic properties of function approximators,
there are two different kinds of VFA methods: linear [8], [12]
and nonlinear VFA [3], [9], [13]. Although RL with nonlinear
VFA exhibits better approximation ability than linear VFA, the
empirical results of RL applications using nonlinear VFA com-
monly lack a rigorous theoretical analysis and the nonlinear
features are usually determined by manual selection, e.g., the
structures of multiple layer perceptrons [14], [15]. The actor-
critic algorithms [11] are another class of RL methods for
MDPs with continuous spaces. Unlike VFA-based methods,
actor-critic algorithms approximate the value functions and
policies of an MDP separately to encourage the realization of
generalization in MDPs with continuous spaces. Many recent
studies of actor-critic methods have focused on adaptive critic
designs, which usually require an approximated model of the
plant dynamics.

As a popular method studied in operations research, policy
iteration can be viewed as an actor-critic method because
the value functions and policies are approximated separately.
Approximate policy iteration (API) methods have been studied
in recent years to solve MDPs with large or continuous
spaces. In [16], a model-free API algorithm called least-
squares policy iteration (LSPI) was presented, offering a RL
method with better properties in convergence, stability, and
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sample complexity than previous RL algorithms. Nevertheless,
the approximation structure in LSPI may lead to degenerated
performance when improperly selecting features. In [17], a
kernel-based LSPI (KLSPI) algorithm was presented for MDPs
with large or continuous state spaces, but the final policies of
LSPI and KLSPI are greatly influenced by the approximation
precision of value functions and the selected basis functions.

Recent attempts to overcome the obstacles associated with
dimensionality have turned to principled ways of problem
decomposition or exploiting temporal abstraction, which are
called hierarchical approaches to RL [18]. As indicated in [19],
existing work in hierarchical RL (HRL) has followed three
trends: focusing on subsets of the state space in a divide and
conquer approach (state space decomposition) [20], grouping
sequences or sets of actions together (temporal abstraction)
[21], and ignoring differences between states based on the
context (state abstraction) [22]–[24]. These three trends have
led to three main approaches to HRL: options formalism [17],
the hierarchies of abstract machines approach [25], and the
MAXQ framework [20], in which the model of semi-Markov
decision processes is commonly used as a formal basis [26].
Although function approximators can be combined with HRL,
few successful applications of existing HRL approaches to
MDPs with large or continuous spaces have occurred. In
addition, it remains difficult to decompose the state space
of MDPs automatically or construct options so that global
optimal policies can be well approximated.

This paper proposes a novel hierarchical API (HAPI)
approach with binary-tree state space decomposition for RL
in a class of episodic MDPs with terminal states, formulated
as absorbing MDPs for goal-directed time-optimal control
tasks. Although we focus primarily on deterministic MDPs,
we also discuss the extension of HAPI to stochastic cases and
test it empirically in the experiments. The learning control
objective is to find an optimal path to the goal state with
minimal state transition steps. In the proposed approach, by
decomposing the original MDP into multiple sub-MDPs with
smaller state spaces, multiple API algorithms can be used
on the sub-MDPs to obtain better near-optimal local policies.
Then, the final global policy can be derived by combining the
local policies in each sub-MDP. After integrating the binary-
tree state space decomposition method with two typical API
algorithms, this paper presents the hierarchical LSPI algorithm
(HLSPI) and the hierarchical KLSPI algorithm (HKLSPI) for
absorbing MDPs. We analyze the hierarchical optimality of
the combined policy in HLSPI and HKLSPI and illustrate
that higher approximation precision of value functions can
be realized for policy evaluation in sub-MDPs. Based on the
theoretical results on performance error bounds in API, better
performance can be obtained for every local policy in HAPI.
Thus, the final combined policy of HLSPI or HKLSPI achieves
better performance than previous LSPI or KLSPI algorithms.

Compared to existing LSPI/KLSPI, HAPI provides a new
hierarchical learning framework for API in absorbing MDPs.
The major novelties of HAPI include an adaptive decompo-
sition of absorbing MDPs and the approximation or achieve-
ment of the hierarchical optimality of the combined policy.
Therefore, the improvement of local policies leads to a better

combined policy. Another major novelty implements API algo-
rithms in a hierarchical way to achieve higher approximation
precision of policy evaluation in sub-MDPs to reduce the
performance errors of local policies and improve the combined
policy performance significantly because of its hierarchical
optimality. Extensive experimental results illustrate the supe-
riority of HLSPI/HKLSPI over existing LSPI/KLSPI.

Section II provides an introduction on MDPs and
the previous API algorithms. Section III presents the
HAPI method and analyzes the hierarchical optimality of
HAPI. This section also provides the performance error
bounds of local and combined near-optimal policies. In
Section IV, a deterministic chain MDP and a stochastic
chain MDP demonstrate the improved precision of HAPI-
based VFA. Simulation on the mountain-car problem and the
experimental results of the path-tracking of a real mobile robot
illustrate the effectiveness of the proposed method. Section V
draws conclusions and suggests some future work.

II. SHORT OVERVIEW OF MDP AND API

A. Markov Decision Processes

An MDP M is denoted as a tuple {X , A, R, P}, where
X is the state space, A is the action space, P is the state
transition probability, and R is the reward function. A sto-
chastic stationary policy π (or just stationary policy) maps
states to distributions over the action space. When referring to
such a policy π , we use π (a|x) to denote the probability of
selecting action a in state x by π . A deterministic stationary
policy directly maps states to actions, denoted as

at = π(xt) t ≥ 0. (1)

A deterministic policy defined by (1) can be viewed
as a special case of a stochastic stationary policy, where
π(a|x) = 1 for a = at and π(a|x) = 0 for other actions.
When the actions at (t ≥0) satisfy (1), policy π is followed
in the MDP M . A stochastic stationary policy π is said to be
followed in the MDP M if at ∼ π(a |xt ), t ≥ 0.

The objective of a decision maker is to estimate the optimal
policy π* satisfying

Jπ∗ = max
π

Jπ = max
π

Eπ

[ ∞∑
t=0

γ t rt

]
(2)

where 0< γ < 1 is the discount factor and rt is the reward at
time-step t , Eπ [•] stands for the expectation with respect to
the policy π and the state transition probabilities, and Jπ is the
expected total reward along the state trajectories by following
policy π . In this paper, Jπ is also called the performance value
of policy π .

The state-action value function Qπ(x ,a) is defined as the
expected, discounted total rewards when taking action a in
state x and following policy π thereafter:

Qπ (x, a) = Eπ

[ ∞∑
t=0

γ trt |x0 = x, a0 = a

]
. (3)

The action value function Qπ (x ,a) satisfies the following
Bellman equation [7]:

Qπ(xt , at ) = Eπ
[
r(xt , at ) + γ Qπ(xt+1, at+1)

]
. (4)



XU et al.: HIERARCHICAL API WITH BINARY-TREE STATE SPACE DECOMPOSITION 1865

For an MDP, a deterministic optimal policy π*(x) maxi-
mizes the expected, discounted total reward of state x

π∗ (x) = arg max
a

Qπ∗
(x, a) . (5)

A state x of an MDP is a terminal (or absorbing) state if the
process never leaves after entering: xt+1 = x holds provided
that xt = x , regardless of the action selected at time t . An
MDP with terminal states is episodic. In this paper, we focus
on episodic MDPs with large or continuous state spaces.

B. API

For MDPs with large or continuous state spaces, computing
the state-action value function Qπ (x ,a) for each state-action
pair is impractical. To realize generalization, the LSPI algo-
rithm has been widely studied in recent years [13]. In LSPI,
the state-action value function Qπ(x ,a) can be approximated
using a linearly weighted combination of n basis functions

Q̂π (x, a) = �φT (x, a)W (6)

where W = (w1, w2, …, wn)T is the weight vector and �φ(x, a)
is the basis function vector, denoted by

�φ(x, a) = (φ1(x, a), φ2(x, a), . . . , φn(x, a))T . (7)

Let

� =

⎛
⎜⎜⎜⎝

�φT (x1, a1)
�φT (x2, a2)

...
�φT (xm, am)

⎞
⎟⎟⎟⎠ , �′ =

⎛
⎜⎜⎜⎝

�φT
(
x ′

1, a′
1)

)
�φT

(
x ′

2, a′
2)

)
...

�φT
(
x ′

m, a′
m)

)

⎞
⎟⎟⎟⎠ ,

R =

⎛
⎜⎜⎜⎝

r1
r2
...

rm

⎞
⎟⎟⎟⎠

where D = {(xi ,ai , ri , x ′
i ,a

′
i)|i = 1, 2,…, m} is a set of col-

lected samples from an initial policy π[0] and a′
i ∼ π[0](a|x ′

i).
Then, the least-squares fixed-point solution for action

VFA [27] and the corresponding improved policy can be
obtained as follows [13]:⎧⎨
⎩

Wπ[t ] = (
�T

(
� − γ�′))−1

�T R

π [t + 1] (x) = arg max
a

�φT (x, a) Wπ[t ] t = 0, 1, . . .

(8)
The KLSPI algorithm presented in [17] describes basis func-

tions by kernel-based features: {k(x , x j )} ( j = 1, 2,…, m),
where x j is a selected sample state and k(., .) is a Mercer
kernel function. For any finite set of points {x1, x2,…, xm},
the kernel matrix K = [k(xi , x j )]m×m is positive definite.
According to the Mercer Theorem [28], a Hilbert space H
and a mapping ϕ from X to H exist, such that

k(xi , x j ) =< ϕ(xi ), ϕ(x j ) > (9)

where < ·,· > is the inner product in H . Although the
dimension of H may be infinite and the nonlinear mapping ϕ
is usually unknown, all the computation in the feature space
can still be performed if it is in the form of inner products.

As discussed in [17], KLSPI can be viewed as a kernelized
version of LSPI. In KLSPI, a kernel sparsification process
is designed based on the approximately linear dependence
(ALD) analysis originally proposed in [29]. By using the
kernel methods, KLSPI has better performance than LSPI in
learning control tasks with continuous state spaces. Moreover,
kernel-based features can be automatically obtained based on
the ALD analysis for kernel sparsification.

According to the theoretical results in [30], the performance
errors of API are upper-bounded by the approximation errors
in policy evaluation steps, making it necessary to develop new
API methods with reduced errors in policy evaluation.

III. HAPI WITH BINARY-TREE STATE SPACE

DECOMPOSITION

The HAPI approach proposed in this paper has two distinc-
tive features compared with previous HRL and API methods.
One is the binary-tree state space decomposition of absorbing
MDPs, performed during the learning process. In the proposed
HAPI method, by using the learned value functions, the
original MDP automatically decomposes into smaller sub-
MDPs. More importantly, as discussed subsequently, the hier-
archical optimality of the combined policy can be ensured or
approximated. Second, by applying API algorithms on the sub-
MDPs, the approximation precision of value functions and the
quality of local near-optimal policies improve. Because of the
hierarchical optimality, the combined global policy performs
better with the improvement of local policies. We analyze the
performance of HAPI theoretically and verify it empirically.

A. Binary-Tree Decomposition of Absorbing MDPs

Because a broad class of optimal control problems can be
modeled as episodic MDPs with goal states, or absorbing
MDPs, we focus on absorbing MDPs for goal-directed optimal
control tasks. Assuming that the intermediate rewards for non-
terminal states are much smaller than the terminal rewards, this
paper seeks an optimal policy to reach the terminal states with
minimal state transition steps. The MDPs studied in this paper
are a class of shortest-path problems. To simplify notations,
we focus on deterministic absorbing MDPs and the extensions
to stochastic MDPs with terminal states will be discussed in
Section III-C. Specifically, in Section IV, we illustrate that
the proposed HAPI approach can solve both deterministic and
stochastic shortest-path problems.

Consider a deterministic absorbing MDP denoted by M0.
Let XT denote the set of terminal states. The reward function
of M0 is assumed as

r(xt , at , xt+1) =
{

rT , xt+1 ∈ XT

r, xt+1 /∈ XT
(10)

where rT − r ≥ ξ > 0, and ξ is a large positive number.
In this section, we present the binary-tree state space

decomposition strategy for deterministic absorbing MDPs.
We first introduce the idea of state space decomposition based
on the expected costs to the absorbing states, assuming a
known optimal value function. We also present the approach
for state space decomposition using approximated value
functions.
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Fig. 1. Illustration of the state space decomposition procedure based on
optimal value functions.

1) State Space Decomposition for Absorbing MDPs: For a
deterministic absorbing MDP M0, a direct strategy for state
space decomposition divides the state space into sub-spaces
or sub-MDPs based on the expected total costs or rewards for
reaching the absorbing states. We adopt the notations Xi and
Mi to denote the sub-spaces and sub-MDPs, respectively. Let
V ∗(x) be the optimal value function of state x . Based on the
optimal value function, an optimal state trajectory or path with
the maximum cumulative reward can be found from any state
to the goal state. Let P(x , xT ) = {x , x1, x2, …,xT } denote
the optimal state trajectory or path from any state x to the
goal state xT . The length of P(x , xT ) is denoted as L(x , xT ).

According to the reward function defined in (9), in which all
the intermediate rewards have the same value and the terminal
reward is much larger than the intermediate rewards, if we
assume 0 < γ < 1, it can be inferred that

if L(x, xT ) > L(x
′
, xT ) then V ∗(x) < V ∗(x

′
). (11)

The state space X0 of M0 decomposes into two sub-sets
by comparing the optimal value function of each state with a
threshold μ

X0 = X1 ∪ X2 (12)

where

X1 = {x
∣∣V ∗(x) ≥ μ } (13)

X2 = {x
∣∣V ∗(x) < μ }. (14)

By projecting the optimal state trajectory L(x , xT ) onto
a 2-D plane, Fig. 1 illustrates the preceding decomposition
procedure, where the original state space X0 is decomposed
into two parts, X1 (white area) and X2 (gray area). The states
in X1 have fewer state transition steps to xT than the states in
X2. According to the Bellman optimality principle, L(x , xT )
from a state in X2 can be decomposed into two sub-paths
L(x , xB) and L(xB , xT ) in X2 and X1, respectively. The state
xB can be viewed as a boundary state between X1 and X2
given that xB belongs to X1, and there is a state transition on
the optimal path from a state in X2 to xB , or

∃x → xB, x ∈ X2, xB ∈ X1.

2) Definition of the Boundary States and Sub-MDPs: As
illustrated in Fig. 1, the boundary set B(1,2) between X1 and
X2 is defined as

B(1,2) = {
x

∣∣x ∈ X1, ∃x ′ → x, x ′ ∈ X2
}

(15)
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Fig. 2. Binary-tree state space decomposition procedure.

where x ′ → x denotes a state transition from x ′ to x and this
state transition is on the optimal trajectory from x ′ to xT .

By using the same state transition model, X1 and X2 can be
viewed as the state spaces of two sub-MDPs of M0. Let M1
and M2 denote the two sub-MDPs in state space X1 and X2,
respectively. For any state x in sub-MDP M2, if the optimal
state transition path is from x to a state in the boundary set
B(1,2), x is defined as a terminal state, and the reward function
is redefined as

r(x, a, x ′) =
{

rT , x ′ ∈ B(1,2)

r, x ′ /∈ B(1,2).
(16)

Then M2 becomes an absorbing MDP with a smaller state
space than M0, and all the states in M1 are near to the
terminal states. As discussed in the following section, the
approximation error of value functions has smaller upper
bounds for states with fewer steps to the terminal states
because a terminal reward determines the value functions
of absorbing states exactly and directly. The value functions
of intermediate states have to be approximated using the
temporal-differences in state transitions, where LS-TD(λ) and
RLS-TD(λ) algorithms are widely used [12], [27]. Therefore,
using the approximated near-optimal policy in sub-MDP M1
as one of the local policies benefits the final global policy, and
the sub-MDP M2 is selected to perform a similar binary-tree
decomposition of its state space. The optimal policy of M2
will find a shortest state-transition path from any state to the
absorbing state set B(1,2).

3) Binary-Tree State Space Decomposition: The process of
state space decomposition for absorbing MDP M0 can be
iterated and illustrated using a binary-tree structure, as shown
in Fig. 2. In each iteration, the optimal value function V ∗

i of
M2i is computed, and a threshold μi is computed based on
the optimal value function

μi = β · max
x∈M2i

V ∗
i (x) (17)

where β is a constant value.
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The threshold μi decomposes the state space of M2i into
two sub-spaces X2i+1 and X2i+2, where X2i+1 usually has a
smaller size than X2i+2 and the sub-space X2i+2 is used for
state space decomposition in the next iteration. If μi becomes
large, the number of sub-spaces and computational complexity
increase. The threshold determined by (15) is a balance
between the depth of the binary-tree and the computational
complexity. So, a medium value of β between 0.2 and 0.4
can be easily selected for the balance. In this paper, the value
of β is fixed as 0.3, and the preceding formula of μi is very
effective in all experiments. Similar to the definition of sub-
MDP M1 in X1, a sub-MDP M2i−1 can be defined in sub-
space X2i−1, and M2i can also be defined using the same
reward definition in (14).

The procedure depicted in Fig. 2 only considers the idea
case where the optimal value function can be obtained or
approximated exactly. In practical applications, because the
real optimal value function V *(x) is unknown, the approxi-
mated optimal value function is used for state space decom-
position by performing API algorithms on the original MDP.
After the decomposition of M0 and the definition of M2, a
similar state space decomposition process can be performed
on M2 using API to approximate the optimal value function
of M2. The iterative procedure terminates when the size of X2n

is small enough or the depth of the binary-tree reaches a given
number, obtaining a set of sub-spaces {X1, X2, X3, . . ., X2n}.
More importantly, during the decomposition process, local
optimal policies π̃∗

i can also be approximated for each sub-
MDP M2i−1. For example, after performing LSPI on M0, the
weight vector W for approximating the optimal value function
can also determine the near-optimal policy for M1.

The approximated local optimal policy for sub-MDP M2n

is denoted as π̃∗
n+1, which is computed by performing API

on M2n directly. The final near-optimal policy for the original
MDP can be produced by combining the local near-optimal
policies as follows:

π̃∗(x) =
{

π̃∗
i (x) x ∈ X2i−1, 1 ≤ i ≤ n

π̃∗
n+1(x) x ∈ X2n.

(18)

B. HAPI Algorithm

Given that no explicit model information for API algorithms
usually exists, data samples from state transitions are collected
by exploring the whole state space of the original MDP M0. In
HAPI, to divide an absorbing MDP into sub-MDPs, the data
samples are partitioned into different subsets of data samples
based on the approximated value functions. Moreover, the
reward functions in different subsets are redefined according to
(16). Therefore, the subsets of data samples appear as the sam-
ples generated in different sub-MDPs. Then, API algorithms
obtain local near-optimal policies of the sub-MDPs with higher
precision, and the global optimal policy can be approximated
as a combination of the local near-optimal policies. Fig. 3
presents the main procedures in HAPI, including the following
steps.

1) Adaptive Sample Collection: The first step for HAPI
uses adaptive sample collection to collect samples as the
input of the algorithm. Because the performance of API

Input: samples D
1 
= {(x

j
, a

j
, x

j
', a

j
', r

j
, f

j
,)}

D
i + 1 

= {(x
j
, a

j
, x

j
', a

j
', r

j
, f

j
,)}∈ D

i  
{x|V~

i 
(x

j
) < μ

i
}

If Q
~

(x'
j
, a*

j
, W

i
) ≥ μ

i
, f

j 
= 1, r

j 
= r

T

If  j <
 
size (D

t
)

j
 
= 1, i

 
= i + 1

j
 
= j + 1

a
j
* = argmax Q

~
(x'

j
, a, W

i
)

Initialize: i
 
= 1, β ∈ (0.2, 0.4)

Perform API on D
i
, output W

i

x ∈ Di
μ

i 
= β.max V

~
i 
(x)

if size (D
i
) ≥ N

min

Yes

No

No

Output weights W
k 
(k = 1, 2, ..., i)

Yes

Fig. 3. Algorithm 1: the HAPI algorithm.

algorithms depends on the input set of collected samples, the
sample collection process needs to explore the state and action
space of an absorbing MDP uniformly. In previous studies of
LSPI and KLSPI, samples were usually collected randomly.
However, in some learning control tasks, when samples were
collected with a stochastic policy, it took too many steps to
reach the absorbing states, e.g., the Mountain-Car problem
in the experimental section. In such cases, for sub-optimal
policies, the samples near the goal or absorbing states will be
visited with low frequencies, which hinder the success of both
previous API algorithms and the HAPI method. In this paper,
an adaptive sample collection method collects data samples
and realizes a tradeoff between exploration and exploitation
using online API during the sample collection process.

In the adaptive sample collection method, an online learning
control loop is executed using API in every time step for
sample collection, where an action selection strategy is used
for the current state based on the outputs of online VFA.
At time step t , an online API is implemented, where the
data samples collected before time step t , {(xi , ai , x ′

i , a′
i ,

ri , fi )|i = 1, 2,…, t−1}, determine the policy. To realize a
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tradeoff between exploitation and exploration, we employed an
epsilon-greedy action selection strategy. At each time step, a
uniform random number is generated within the interval [0, 1],
and a greedy action with the maximum action value is selected
when the random number is greater than a given threshold η,
where η is a small positive number.

2) Online Sample Set Decomposition: Let D1 = (x j , a j ,
x

′
j , a

′
j , r j , f j ) ( j = 1, 2, …, N , f j is the flag for terminal

states) be the set of data samples collected in M0 and the initial
iteration number be i = 1. Let Di denote the sample set for
sub-MDP M2(i−1). The first step in each iteration uses API
to approximate the near-optimal policy of M2(i−1) using the
data samples in Di . After the convergence of API, a weight
vector Wi determines the value function of the near-optimal
policy πi . To decompose M2(i−1) into sub-MDPs iteratively,
the estimated value functions in M2(i−1) partition the sample
set Di into two subsets, where one subset Di+1 is used for
state space decomposition in the next iteration. Similar to (17),
the threshold μi is automatically determined by the following
equations:

μi = β · max
x∈Di

Ṽi (x) (19)

Ṽi (x) = max
a

Q̃i (x, a, Wi ) = max
a

φT
i (x, a)Wi . (20)

The subset Di+1 for M2i is determined as follows:

Di+1 =
{
(x j , a j , x ′

j , a′
j , r j , f j ) ∈ Di

∣∣∣Ṽi (x j ) < μi

}
. (21)

3) Identification of Boundary States: For every sample (x j ,
a j , x

′
j , a

′
j , r j , f j ) in Di+1, a state is identified as a boundary

state if the following condition is satisfied:
Q̃i (x ′

j , a∗
j , Wi ) ≥ μi (22)

where
a∗

j = arg max
a

Q̃i (x ′
j , a, Wi ). (23)

A boundary state is a terminal state or absorbing state in
M2i,where the absorbing flag and reward are set as f j = 1
and r j = rT .

The prior procedure is iterated until the number of remain-
ing samples is smaller than a given number Nmin or the itera-
tion number i reaches the maximum iteration number. When
the size of D2n is no more than Nmin, the HAPI algorithm
is completed, and a set of policies {π1, π2, . . ., πn+1} is
obtained, where πi is the local near-optimal policy of M2i−1
(1≤ i ≤ n) using API and πn+1 is the local near-optimal policy
of M2n . The final policy to be executed is a combination of
the local policies {π1, π2, . . ., πn+1}.

4) Termination Criterion and Policy Combination: To ter-
minate the HAPI algorithm, the minimal number of samples
in Di can be selected, denoted by Nmin. For the selection of
Nmin, the sample distribution and the maximal length from an
initial state to the goal state influence it. If N initial samples
are uniformly collected from M0 and the maximal trajectory
length from an initial state to the goal state is L, an appropriate
value of Nmin can be selected between 10N/L and 30N/L.

The termination criterion for a single API on a sample set
Di is the maximum iteration number or the distance between

Algorithm 2 Policy combination of HAPI
1: Given:

1) x , the current state;
2) μi , the threshold value determined in Algorithm 1;
3) a set of local policies {π1, π2, …, πn+1} determined by

the weight vectors Wi (i = 1, 2, …, n + 1)
2: i = 1.
3: While i ≤ n+1.

(3.1) Select the greedy action ai = π i (x) according to π i .
(3.2) Compute

Ṽ πi (x) = Q̃πi (x, ai , Wi ).

(3.3) If Ṽ πi (x) ≥ μi or i = n + 1, go to 4.
(3.4) i = i + 1.

4: Return the selected action ai .

two successive policies π[i ] and π[i + 1]. The local near-
optimal policies obtained in different iterations generate the
real actions in the sub-spaces of the original MDP, i.e., the sub-
MDPs. For the local near-optimal policy πi , it will be the local
policy to be executed in the state space of sub-MDP M2i−1.
Algorithm 2 describes the policy combination procedure.

In Algorithm 2, every local policy generates an action output
according to its approximated value functions, but only one
output will be the optimal action. Because the current state
is within the state space of one sub-MDP M2i−1 or M2n , the
selected action will be the output of local policy πi or πn+1.
In Algorithm 2, a loop is executed from π1 to πn+1, and the
index i of sub-MDP M2i−1 or M2n can be determined when
the value function V πi (x) is greater than μi for the first time.
If i reaches the maximal value n+1, the state x will be in
the state space of M2n and the action output of πn+1 will be
selected.

C. Performance Analysis and Discussions

In this section, the performance of HAPI will be analyzed
based on the quality of final combined policies, measured
in terms of the expected total rewards after performing the
final policies along a complete state trajectory from starting
states to terminal states. In particular, the performance errors
between a near-optimal policy and the optimal policy will be
considered, as measured by the differences between the total
rewards received by following a near-optimal policy and the
total rewards received by the optimal policy.

Generally speaking, the main advantage of HAPI over
previous API algorithms is that the performance errors of
final policies can be significantly reduced by decomposing the
original MDP into sub-MDPs in a binary-tree structure and
fusing the local policies together. In addition to state space
decomposition, feature representation and sample complexity
[31], [32] are two other factors for the performance of RL
algorithms in MDPs with large or continuous state spaces.
To illustrate the effectiveness of the binary-tree state space
decomposition in HAPI, the performance comparison between
HAPI and API uses the same feature representation and sample
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complexity. The performance evaluations and comparisons
of different feature representation methods, such as kernel
methods [17], neural networks [14], [15], [33], [34], and other
tree-based RL methods, are beyond the scope of this paper. For
the sample complexity problem, we consider the case of finite
sample size, which is true for many real applications including
robot control among others.

In the framework of HAPI, a local policy πi (i = 1, 2,…, n)
is defined as the final near-optimal policy obtained after the
convergence of a single API in a sub-MDP. The combined
policy π of HAPI is the policy obtained by Algorithms 1
and 2. It is also called a hierarchical policy composed of
local policies in a hierarchy of sub-MDPs. In the following,
the performance of HAPI is analyzed in three aspects. First,
the performance error bounds of a local policy indicate that the
performance error bounds of local policies can be reduced by
performing API on smaller sub-MDPs with absorbing states.
Second, the hierarchical optimality of the combined policy is
verified so that the performance errors between the combined
policy of HAPI and the best hierarchical policy are zero or very
small. Therefore, with reduced performance errors in local
policies, the performance errors between the combined policy
in HAPI and the globally optimal policy can also be reduced.

1) Performance Errors of a Local Policy in HAPI: A local
policy πi in HAPI is obtained by a single API using the
samples with transformed reward from sub-MDP Mi . The
performance error of the local policy is analyzed based on
the existing results on performance error bounds of API. As
described in [35], if the policy evaluation is accurate to within
ε, API algorithms will yield a sequence of policies such that

lim sup
m→∞

∥∥Jπm − J ∗∥∥∞ ≤ 2γ ε

(1 − γ )2 (24)

where J ∗ is the performance value of the optimal policy and
Jπm is the performance value of a policy in the m-th iteration.

The results in (24) provide performance bounds on the
closeness to optimality of the approximate value functions
obtained by successive policy improvement steps as a func-
tion of the maximum norm of value approximation errors
during policy evaluation. However, because quadratic norms
are commonly used as performance measures in TD learning
algorithms for policy evaluation, the above results using max-
imum norms will have limited practical range. In [30], the
performance error bounds were obtained for API algorithms
using quadratic norms, where the main results are described
by the following inequalities:

lim sup
m→∞

∥∥Jπm − J ∗∥∥
ρ

≤ 2γ

(1−γ )2 lim sup
m→∞

∥∥∥V̂ πm−V πm

∥∥∥
ρm

(25)

lim sup
m→∞

∥∥Jπm−J ∗∥∥
ρ

≤ 2γ

(1−γ )2 lim sup
m→∞

∥∥∥V̂ πm−T πm V̂ πm

∥∥∥
ρ̃m

(26)

where ρ is an arbitrary distribution on X and ρm (m = 1, 2,…)
are distributions related to ρ and the policies πm and π*.

Given that in API, the approximation error between the
estimated value function and the real value function cannot be

computed directly, the Bellman residual errors are estimated as

rπ (x) = r
(
x, x ′) + γ V̂ π

(
x ′) − V̂ π (x) (27)

where x ′ is the successive state of state x and r(x, x ′) is the
reward.

In [36], an error bound between the least-squares fixed-
point solution of LS-TD learning and the real value function
was derived. Furthermore, in [37], an unbiased estimation of
a modified loss function for Bellman residual minimization
(BRM) was obtained and when linearly parameterized func-
tions are used, both LS-TD and the BRM-based approach
converged to the same solution, minimizing the modified BRM
loss function. When high precision of VFA is realized for
the fixed-point solution of LS-TD, the Bellman residual error
is likely bounded. In the following, an upper bound of the
Bellman residual errors for policy evaluation in API algorithms
is defined as:

Rπ = max
xt

∣∣rπ (xt)
∣∣ . (28)

Let the approximation error of the value function be

V π (xt ) = V π (xt ) − V̂ π (xt ) . (29)

In the policy evaluation process of API, for a stationary
policy π , the approximation error of value functions satisfies

V π (xt ) = rπ (xt ) + γV π (xt+1) . (30)

For MDPs with absorbing states, a sample trajectory with
length N consists of the following state transitions:

x1
r1→ x2

r2→· · · rt→ xt
rt+1→ · · · rN−1→ xN (31)

where xN is an absorbing state. The number of state transition
steps from an intermediate state xt to the absorbing state is
N − t .

Based on (13), the following relation holds:∣∣V π (xt )
∣∣ = ∣∣rπ (xt ) + γV π (xt+1)

∣∣
≤ ∣∣rπ (xt , at )

∣∣ + γ
∣∣V π (xt+1, at+1)

∣∣
≤ Rπ + ∣∣V π (xt+1)

∣∣ (32)
N−1∑
i=t

∣∣V π (xi )
∣∣ ≤ (N − t)Rπ +

N∑
i=t+1

∣∣V π (xi )
∣∣

∣∣V π (xt )
∣∣ ≤ (N − t)Rπ + ∣∣V π (xN )

∣∣ . (33)

Because the value function of the absorbing states can be
updated by the real terminal rewards, the approximation error
of the value function in xN can be made as small as possible,
that is ∣∣V π (xN )

∣∣ ≈ 0. (34)

Then, the approximation errors of the value functions for non-
absorbing states have upper bounds as follows:∣∣V π (xt )

∣∣ ≤ (N − t)Rπ . (35)

Using these results, we infer that the approximation errors
of states near the absorbing states can be lower than those
states with more transition steps to the absorbing states. In the
proposed HAPI method, with the binary-tree decomposition
of state spaces and the reward transformation mechanism, the
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state spaces of the sub-MDPs are all near the absorbing states.
Then, smaller approximation errors of action value functions
can be realized for local policies. More importantly, because
of the smaller state space of sub-MDPs, the LS-TD algorithms
can have smaller Bellman residuals in each sub-MDP

Rπ
i < Rπ

all (36)

where Rπ
i and Rπ

all are the Bellman residuals of TD
learning in the sub-MDP and the whole MDP, respectively.

According to this analysis, the approximation errors of value
functions for local policies in HAPI can be reduced by two
factors: the average number of steps to the absorbing states
and the possible reduction of Bellman residuals. Thus, based
on the results in (25) and (26), the performance errors of the
local policies in HAPI can also be reduced.

2) Hierarchical Optimality of the Combined Policy: The
notion of hierarchical optimality for a hierarchical policy was
introduced in [20]. Let J (x) be the expected cumulative reward
along the trajectory starting from x . Suppose an MDP M =
{X , A, R, P} has a hierarchy consisted of sub-MDPs M1, M2,
…, Mn . Formal definitions of a hierarchically optimal policy
and a recursively optimal policy follow.

Definition 1 (Hierarchical Optimality): Denote � = π M =
(π1 j , π2 j , . . ., πnj )} ( j = 1, 2,…) as the set of all hierarchical
policies consistent with the given hierarchy, where πi j is a
local policy of Mi . If there is a hierarchical policy π*∈ �,
such that

∀x ∈ X ∀π M ∈ �, Jπ∗
(x) ≥ Jπ M

(x) (37)

then π* is called a hierarchically optimal policy.
Definition 2 (Recursive Optimality): Denote π M = (π1,

π2, . . ., πn) as a hierarchical policy consistent with the given
hierarchy, if for i = 1, 2, . . ., n, πi is a local optimal policy
of Mi , π M is called a recursively optimal policy.

Based on this definition, a hierarchically optimal policy {π1,
π2, . . ., πn+1 } for M achieves the highest cumulative reward
among all policies consistent with the given hierarchy. The
recursive optimality is a kind of local optimality in which
the policy at each node is optimal given the policies of its
children, meaning that recursive optimality is mainly due to
the design of the hierarchy. When the sub-tasks are properly
defined, recursive optimality becomes hierarchical optimality.
In MAXQ, the task or state space decomposition is usually
carried out by the designer and based on the assumption that
the programmer identifies useful subgoals and defines subtasks
that achieve these subgoals. MAXQ converges, with proba-
bility 1, to a recursively optimal policy. Furthermore, [19]
explained that when the reward or task decomposition was
properly defined, MAXQ can also find a hierarchically optimal
policy.

The HAPI approach decomposes the state space during
the learning process, and under certain assumptions, the hier-
archical policy defined by the binary-tree decomposition in
Fig. 1 can be guaranteed to be hierarchically optimal. In the
following, for a deterministic absorbing MDP M0, the reward
function of which is defined by (9), if π∗

i (1≤ i ≤ n) is the
optimal policy in sub-MDP M2i−1, and π∗

n+1 is the optimal
policy of M2n , the hierarchical policy π = {π∗

1 , π∗
2 , …, π∗

n+1}

is hierarchically optimal or the performance error between π ,
and the hierarchically optimal policy is bounded.

For any state x ∈ X2n , using the hierarchical policy π , a
state transition trajectory T (x , xT ) ={x , x1, x2,…, xT } will
be generated from x to the absorbing state xT . Although the
starting state x can also be in other sub-spaces, we assume
x ∈ X2n in the sequel given that the analysis is similar.

Let X2i−1 (1≤ i ≤ n) be the sub-spaces, and let B(i,i+1)

denote the boundary set of two adjacent sub-MDPs, X2i−1 and
X2i+1. Define B(n,n+1) as the boundary set between X2n−1 and
X2n and B(0,1) as the absorbing states xT in M0.

Because π ={π∗
1 , π∗

2 ,…, π∗
n+1} is a hierarchical policy

consistent with the binary-tree state space decomposition, a set
of connected sub-trajectories {Tn+1, Tn , …,T1} of T (x , xT )
in every sub-MDP or sub-space can be defined, where Ti (1≤
i ≤ n) connects the states in boundary set B(i,i+1) to the states
in B(i−1,i), and Tn+1 is the trajectory in M2n starting from x
to the states in B(n,n+1).

Let the total reward of T (x , xT ) be denoted by J (T ). Then

J (T ) =
n∑

i=1

J (Ti ) + V ∗(x) (38)

where J (Ti ) is the total reward for each sub-trajectory Ti , and
V ∗(x) is the optimal value function of x in sub-MDP M2n .

Let π, = {π,
1, π,

2, . . ., π
,
nπ,

n+1} denote the hierarchical
optimal policy that achieves the highest cumulative reward
among all policies consistent with the given hierarchy, where
π,

i (1≤ i ≤ n) is also the local optimal policy of M2i−1 and
π,

n+1 is the optimal policy of M2n . According to π’, a state
trajectory T ′(x , xT ) from x to xT can be obtained. Similarly,
we also define a set of connected sub-trajectory {T ,

n+1, T ,
n , …,

T ,
1} of T ,(x , xT ) in every sub-MDP. T ,

i (1≤ i ≤ n) connects
the boundary states in B(i,i+1) to the states inB(i−1,i), and
T ,

n+1 is the trajectory in M2n starting from x to the states in
B(n,n+1). Then, the total reward of T , becomes

J (T ′) =
n∑

i=1

J (T ′
i ) + V ∗(x). (39)

Because Ti , T ′
i (i = 1, 2,…, n) are the state transition

trajectories starting from a boundary state in B(i,i+1), and
π∗

i (1≤ i ≤ n) is the optimal policy in sub-MDP M2i−1, J (Ti),
and J (T ′

i ) equals the optimal values of the boundary states in
B(i,i+1).

For the boundary states xi in B(i,i+1), we consider two
cases: first, the case in which the boundary states have the
same optimal value V ∗(xi ) = μi , and second, that the case in
which there is a small interval for the optimal values of the
boundary states.

Case 1: For xi ∈ B(i,i+1) , V ∗(xi ) = μi .
In this case, because of the uniqueness of the optimal value

function in the boundary set, we obtain

J (Ti ) = J (T ′
i ) = V ∗(xi ), i = 1, 2, . . ., n

J (T ) = J (T ′) =
n∑

i=1

J (T ′
i ) + V ∗(x). (40)
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Therefore, π = {π∗
1 , π∗

2 , …, π∗
n+1} achieves the highest

cumulative reward among all policies consistent with the given
hierarchy.

Case 2: For xi ∈ B(i,i+1), V ∗(xi ) is not unique.
According to the definition of boundary states, a state tran-

sition occurs from x ′ to xi , where V ∗(x ′) < μi , V ∗(xi ) ≥ μi .
Given that V ∗(x ′) = r + γ V ∗(xi ), and rT are much greater
than the absolute value of r , μi will also be much greater than
the absolute value of r . Then, we obtain

V ∗(x ′) = r + γ V ∗(xi ) < μi (41)

V ∗(xi ) <
(μi − r)

γ
≈ μi

γ
(42)

μi ≤ V ∗(xi ) <
μi

γ
. (43)

Given that a discount factor near 1 is usually used in RL,
a small interval for the optimal values of boundary states
occurs, i.e., for xi ∈ B(i,i+1) , V ∗(xi ) is near the value of μi .
Suppose two boundary states x1 and x2 exist, where x1 ∈ Ti ,
x2 ∈ T ′

i . Because J (Ti ) = V ∗(x1) and J (T ′
i ) = V ∗(x2), the

performance error bound between Ti and T ′
i is

∣∣J (Ti ) − J (T ′
i )

∣∣ = ∣∣V ∗(x1) − V ∗(x2)
∣∣ <

μi (1 − γ )

γ
. (44)

Then, the performance error bound between T and T ′ is

∣∣J (T ) − J (T ′)
∣∣ <

n∑
i=1

μi (1 − γ )

γ
. (45)

Note that the previous bound is based on the worst case
analysis. In practice, n is a small number, and γ is near 1. The
performance error bound is thus also small. In [20], it is shown
that a recursively optimal policy may not be a hierarchically
optimal policy, given that the boundary states have different
optimal values in a sub-MDP. Thus, for each sub-MDP, if the
optimal values of boundary states do not differ much, which
is shown in (43), the hierarchical optimality can be ensured
or well approximated.

3) Performance Errors of the Combined Policy in HAPI: In
the framework of HAPI, the performance value of a hierarchi-
cal policy is the sum of performance values of local policies.
Therefore, if locally optimal policies are obtained for each
sub-MDP, the hierarchically optimal policy is a combination
of local optimal policies achieving the highest cumulative
rewards for any state trajectories. In our previous analysis, we
have verified that when π∗

i (1≤ i ≤ n) is the optimal policy in
sub-MDP M2i−1, and π∗

n+1 is the optimal policy of M2n , the
combined policy in HAPI is a hierarchically optimal policy or
the performance error between the combined policy and the
hierarchically optimal policy is small.

For MDPs with large or continuous state spaces, only near-
optimal policies with performance errors can be obtained.
Based on the results in (25), (26), and (36), it is shown that the
performance errors of local policies in HAPI can be reduced.
Therefore, if near-optimal policies with reduced performance
errors are obtained in sub-MDPs, the performance error of the
combined policy in HAPI can be expected to be small and its
performance will be better than a single API algorithm.

L

r = −1

−100 100−99 −98 98 99−1 10
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R
R

Fig. 4. Chain MDP.

4) Further Discussions: After satisfying certain assump-
tions, the proposed HAPI approach can also be extended
to stochastic MDPs with terminal states. In addition to the
reward function defined in (10), one basic assumption is
that the optimal value function of a state satisfies V ∗(x) ∝
1/T (x),∀x ∈ X, where T (x) is the expected time steps
from x to terminal states. Since the state space decomposition
procedure presented in this paper is only based on optimal
value functions, it can also be applied to stochastic MDPs.
Fig. 1 indicates that X1 includes all the states the expected
cumulative rewards of which are greater than or equal to
the threshold and other states included in X2. Based on the
definition of sub-spaces X1 and X2, two stochastic sub-MDPs
M1 and M2 can also be defined in which the state transition
probabilities within a sub-space equal the original MDP. If
there is a state transition from a state x in X2 to X1, the
successive state will be regarded as a terminal state in X2. In
the following section, simulation results on a stochastic chain
MDP illustrate the effectiveness of HAPI in stochastic MDPs
with terminal states.

It is critical for the success of API algorithms to reduce
the errors in policy evaluation. As illustrated in (25) and
(26), the performance of the approximated policies can be
bounded in quadratic norms by a function of the approximation
errors of value functions and the Bellman residuals during the
policy evaluation steps. In [38], a tighter upper bound on the
performance loss of API algorithms is derived and indicates
that the reduction of policy evaluation errors leads to lower
upper bounds of performance losses. Therefore, the proposed
HAPI algorithm reduces the performance error bounds of
local policies by improving the approximation precision of
value functions in policy evaluation steps. Moreover, because
of the hierarchical optimality of the combined policy, the
performance of the combined policy in HAPI also improves.

In addition to many applications in supervised learning,
researchers publishing in RL literature have explored the func-
tion approximation using a tree-based structure. In [39], the
U tree algorithm was proposed to generate a tree-based state
discretization that efficiently finds the relevant state chunks of
large propositional domains. The continuous U tree algorithm
presented in [40] transfers regression tree techniques to RL.
In [41], the fitted Q iteration algorithm uses several tree-based
regression methods and obtains good results when combining
the fitted Q iteration algorithm with tree-based ensemble meth-
ods such as extra-trees, tree bagging, and totally randomized
trees. In [42], the U-tree algorithm was combined with option-
based HRL algorithms to automate state abstraction in options,
which can realize option-specific state abstraction to achieve
better performance. The tree structure in HAPI focuses on state
space decomposition in improving the performance of VFA,
while previous tree-based RL methods use tree structures for
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Fig. 5. Local (πi ) and combined (πc) near-optimal policies learned by HKLSPI. (Nmin = 20) 1: “left,” −1: “right.” (a) Learning results for the deterministic
MDP. (b) Learning results for the stochastic MDP.

feature representation or state abstraction in learning a value
function. These two kinds of tree structures are complementary
to each other. It can be expected that when other tree-based
RL methods are integrated with HAPI, the performance of
HAPI will be better than tree-based RL without state space
decomposition.

In summary, by using the binary-tree space decomposition
and the policy combination strategy, HAPI provides a new
HRL framework for API, and it has advantages over LSPI
and KLSPI in policy quality and stability, as illustrated in
the following experiments. Furthermore, HAPI is a novel
ensemble RL method differing from previous ensemble RL
algorithms [43], [44] in that the samples are decomposed
during the learning process and the policy combination is
based on the principle of hierarchical optimality.

IV. EXPERIMENTAL RESULTS

A. Chain MDP

The chain MDP problem considers a Markov chain with
201 states (indexed from −100 to 100), as illustrated in Fig. 4.
The state numbered 0 is the absorbing state. At each non-
absorbing state, there are two actions available, i.e., “go left”
and “go right.” According to the selected action, the next state
becomes the left neighbor or the right neighbor of the current
state. If the next state is a non-absorbing state, the reward
of the state transition is −1, otherwise, the reward will be
100. The optimal action is “go right” when the state index
is negative and “go left” when the state index is positive.
The discount factor γ is set at 0.9. For the choice of γ ,
the performance analysis in Section III.-B indicates that the
value of γ should be near 1 but not too near because the
performance bounds in (44) are proportional to 1/(1 − γ ). In
our experiments, a value of γ between 0.9 and 0.95 led to good

performance, but when γ is equal to 0.99, the performance of
HAPI and LSPI became worse.

Because the state space of the chain MDP is small and the
problem is deterministic, the data samples were collected in a
uniform way, in which each state-action pair was tested as a
sample. So, the collected sample set consists of 400 samples.
In the LSPI algorithm, the basis functions were selected as⎧⎪⎨
⎪⎩

φ(x, L) =
(

1, 10x
201 ,

( 10x
201

)2
,
( 10x

201

)3
,
( 10x

201

)4
, 0, 0, 0, 0, 0

)T

φ(x, R) =
(

0, 0, 0, 0, 0, 1, 10x
201 ,

( 10x
201

)2
,
( 10x

201

)3
,
( 10x

201

)4
)T

(46)
where x is the state index and “L” and “R” denote the actions
of “go left” and “go right,” respectively.

In the KLSPI algorithm, the kernel function and the data
dictionary for the sparsified kernel matrix were selected as⎧⎨

⎩k
(
xi , x j

) = e
−

(
(xi −x j )

10

)2

Dic = {10 ∗ i | i = −9,−8, . . . , 8, 9}.
(47)

To test the effectiveness of HAPI in stochastic MDPs, a
stochastic model of the above chain MDP was simulated.
In the stochastic model, at each non-absorbing state, there
are still two actions available, i.e., “go left” and “go right.”
But for the “go left” action, there will be a probability of 0.9
to go to the left state (or go to itself for state −100), and
the probability to the right state is 0.1 (or go to itself for state
100). Similar state transition probability is also defined for the
“go right” action. The optimal policy equals the deterministic
version. By automatically decomposing the original state space
into 11 sub-spaces and combining the local policies, the
proposed HAPI algorithm successfully obtained the optimal
policy of the stochastic chain MDP problem. However, more
data samples are needed because of the stochastic property of
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Fig. 6. Mountain-car task.
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Fig. 7. Performance comparisons using percentage of successes.

the problem. In Fig. 5(b), the learning results of HAPI in the
stochastic chain MDP are illustrated, where 10 000 samples
were collected uniformly from the state space. In the stochastic
case, LSPI and KLSPI also failed to find the optimal policy.

B. Mountain-Car Problem

In the mountain-car task, there are two continuous states:
st = [pt , vt ], where pt and vt are the position and velocity
of the car. There are two possible actions (at ∈ {−1, +1}):
full throttle forward (+1) and full throttle reverse (−1). The
mountain road is defined as h = sin(3 pt), where h is the
height. The car moves according to the following dynamics:{

vt+1 = bound[vt + 0.001at + g cos(3 pt)]
pt+1 = bound[pt + vt ] (48)

where the bound operation enforces pt+1 ∈ [−1.5,
0.5] and vt+1 ∈ [–0.07, 0.07], and the acceleration of
gravity g = −0.0025.

When pt+1 reaches the left bound, vt+1 is reset to zero.
When it reaches the right bound, it reaches the goal (the star
in Fig. 6), and the episode terminates. Each episode starts from
the lowest point p = −0.5 with a velocity of 0, and ends when
the car reaches the goal point (p∗ = 0.45) or the number of
steps is no less than 1000. The reward is designated as

rt
[
(pt , vt ) , at , (pt+1, vt+1)

] =
{

−1 if pt+1 < p∗

100 if pt+1 ≥ p∗.
(49)

The experiments evaluated both API and HAPI algorithms.
Because LSPI dealt with the problem of linear feature selection
and its performance was usually inferior to KLSPI, only
kernel-based features were used in the evaluations, i.e., perfor-
mance comparisons were made between KLSPI and HKLSPI.
The same sample sets with different episodes were used for
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Fig. 8. Performance comparisons using averaged steps to goal.

both algorithms, in which the samples were collected using
the adaptive sample collection method discussed in Section III.
The discount factor was 0.90. The kernel function was

k
(
si , s j

) = e
−

[( pi −p j
σ1

)2+
( vi −v j

σ2

)2
]

(50)

where si and s j denote (pi , vi ) and (p j , v j ), respectively, σ1 =
0.5, σ2 = 0.05.

For HKLSPI, the threshold value μi for space decomposi-
tion is automatically determined during the learning process,
and the minimal number of remained samples is 100. The
episode number of training samples varies from 1 to 30.
For each episode number, a trial is defined as running API
algorithms from a randomly initialized policy to convergence.
In the experiments, 100 runs were executed to evaluate the
performance of KLSPI and HKLSPI. A successful run means
the final near-optimal policy can make the car reach the
goal within 1000 steps. During the 100 runs, the number of
successful trials for HKLSPI and KLSPI was compared, as
depicted in Fig. 7. Furthermore, the performance curves of the
final policies, measured as steps to reach the goal, averaged
in 100 runs, together with the 95% confidence intervals, are
illustrated in Fig. 8.

As depicted in Fig. 7, with the same set of training samples,
the HKLSPI approach has much higher percentages of suc-
cessful trials when compared with KLSPI, meaning that using
the same experience data, HKLSPI can obtain a near-optimal
policy with a much higher probability. Fig. 8 illustrates that
HKLSPI has much better performance than KLSPI in terms
of the quality of the final policies, i.e., the averaged steps to
the goal. Therefore, the proposed HAPI approach can greatly
improve the data efficiency and the quality of final policies
for conventional API algorithms.

To compare the performance between HAPI and API in
different problem settings, the mountain car problem was
simulated with different dynamics models and the performance
of RL algorithms was evaluated both in terms of the SR
(computed in 100 independent runs) and the quality of final
near-optimal policies (averaged steps to reach the goal state).

Tables I and II show the performance comparisons between
KLSPI and HKLSPI using five different problem settings,
including the standard parameter setting, the acceleration of
gravity with additive uniform noises and Gaussian noises,
and the actions or power with additive uniform noises and
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TABLE I

PERFORMANCE COMPARISONS IN TERMS OF SUCCESS RATES (SR)*

�����������Models
SR

N = 10 N = 20 N = 30

KLSPI HKLSPI KLSPI HKLSPI KLSPI HKLSPI

Model 1 0.10 0.71 0.10 0.76 0.12 0.89

Model 2 0.11 0.85 0.12 0.84 0.09 0.89

Model 3 0.13 0.71 0.20 0.82 0.16 0.86

Model 4 0.10 0.83 0.12 0.84 0.13 0.86

Model 5 0.11 0.70 0.15 0.86 0.16 0.85

TABLE II

PERFORMANCE COMPARISONS IN TERMS OF AVERAGE STEPS TO REACH GOALS (AS)*

������Models
AS

N = 10 N = 20 N = 30

KLSPI HKLSPI KLSPI HKLSPI KLSPI HKLSPI

Model 1 266.50 154. 39 285.10 127.62 253.58 131.89

Model 2 217.00 150. 21 222.25 142.75 235.00 129.37

Model 3 237.90 146. 03 236.00 143.59 288.06 132.37

Model 4 260.90 147. 66 286.33 147.8 291.15 129.27

Model 5 292.50 152. 73 270.60 129.8 285.38 125.47

*Five different dynamics models were simulated to test the performance of HAPI and API:
Model 1: The standard mountain car problem.
Model 2: The acceleration of gravity with additive uniform noises in [−0.0005, 0.0005].
Model 3: The acceleration of gravity with additive Gaussian noises μ = 0, σ = 0.00025.

Model 4: Actions with additive uniform noises from [−0.2, 0.2].
Model 5: Actions with additive Gaussian noises μ = 0, σ = 0.1.

Gaussian noises. From Table I, the HKLSPI has much higher
SR than KLSPI under different problem settings, where N
is the number of sampling episodes. In Table II, using the
same number of sampling episodes, the quality of the final
combined policy in HKLSPI is much better than KLSPI. In
our experiments, when different kernel parameters were used,
HKLSPI achieved better performance than KLSPI, in terms of
the SR in 100 runs and the averaged steps to reach the goal.

C. Learning Control of a Real Mobile Robot

Robust motion control algorithms are fundamental to
autonomous operation of mobile robots. Because of the nonlin-
ear dynamics of robot systems and the uncertain disturbances
from the environment, robot motion control presents difficult
problems in engineering. Popular approaches that develop
motion control algorithms range from model-based control to
machine learning techniques, and all require a high level of
expertise and effort for implementation. In the following, a
path-tracking control strategy based on API combined with
proportional-derivative (PD) control was studied using a real
wheeled mobile robot. The advantage of RL for mobile robots
is that optimized control policies can be obtained without
much a priori knowledge on dynamics models of mobile
robots and unknown external disturbances.

The mobile robot platform is a P3-AT wheeled mobile robot
system. As a differentially driven platform, the robot receives
control commands in terms of linear velocity and angular
velocity, which are transformed by a built-in controller into
a differential control strategy for the wheels. The position and

Reward

Robot
u

e
xd x

r

PD
Controller

API/HAPI

Fig. 9. API-based robot motion control system.

orientation of the robot are measured by high-resolution opti-
cal encoders mounted on the driven wheels. Fig. 9 illustrates
the API-based motion control system of the mobile robot,
where API or HAPI algorithms are used to optimize the PD
control parameters based on sampled trajectories.

The task for the mobile robot is to track a path with minimal
tracking errors. In the PD controller, the following control law
is used:

ωd (t) = k p(t)e(t) + kd(t)ė(t) (51)

where e(t) = yd(t) − y(t), y(t), and yd(t) are the actual and
desired positions in the vertical axis, respectively, and kp(t)
and kd(t) are time-varying PD coefficients determined by API
algorithms.

In the experiments, a global coordinate (x , y, θ ) for the
robot was defined, and the initial position of the robot was
set in a small region around (x , y) = (0, 0), with a randomly
selected initial orientation. The desired path was y = 5m, and
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the absorbing states were defined as

�xT ∈ {(y, θ) ||y − 5| < 0.2, |θ | < 0.1}. (52)

When the states of the robot reach the absorbing states, the
path-tracking error becomes very small. Because only lateral
control was considered, the longitudinal velocity of the robot
was set as a constant v = 0.3 m/s in simulation and real-
time control. The action space of the MDP was defined as a
series of PD coefficients expressed by a(t) ∈ [(kp1, kd1), (k p2,
kd2),…,(k pn, kdn)]. Because of the difficulties in measuring
the robot velocities, we only used the position and orientation
information to define the states. In the above task, the state
vector of the MDP is defined as �x = (y, θ).

The learning control objective is to realize a time-optimal
control for the robot from a random initial configuration to the
absorbing states defined in (52). To optimize the path-tracking
performance, the reward function is defined as follows:

rt =
{

100 |yt − 5| < 0.2, |θt | < 0.1

−1 others.
(53)

To facilitate sample collection, the commercial simulation
software of the P3-AT mobile robot system generated sample
trajectories. In the simulation software, random noises were
added in the execution of the robot control commands to emu-
late disturbances in real world. A sample collection episode
starts from a configuration (x , y, θ ) uniformly distributed in
the following interval:

[0.0, 1.0] × [−1.0, 6.0] × [−π
18 , 10π

18

]
.

Each episode has a maximum number of state transition
steps of 10. The action policy is also a random policy to
select the PD parameters [kp(t), kd(t)] from three candidate
combinations: a ∈{[1, 60], [3, 50], [5, 40]}, manually selected
with stability properties. API algorithms are used to approx-
imate optimal control policies by learning a switching policy
among the candidate PD parameters. The time step for online
control is 0.5 s. Using the simulation software, 1000 episodes
of data samples were collected for the implementation of
KLSPI and HKLSPI. The final near-optimal policies of KLSPI
and HKLSPI were evaluated in the real robot platform and the
simulation software, obtaining similar results. In the experi-
ments, to approximate the action value functions, a radial basis
function (RBF) kernel was used. The same RBF width σ was
employed to compare the performance between KLSPI and
HKLSPI. After the convergence of API and HAPI algorithms,
the performance of the final policies were tested both on the
real and simulated robot. The initial configuration of the robot
was set as (x , y, θ) = (0, 0, 0).

Fig. 10 illustrates the path-tracking trajectories of KLSPI
and HKLSPI in the real and simulated robot. For comparison,
the best performance obtained by conventional PD control
using one of the three candidate PD parameters is also shown.
The initialization parameters were set as γ = 0.9, Nmin =
50, δ = 0.01, and σ = 4. The points marked with large
hexagrams on the trajectories represent the first time of the
robot state to reach an absorbing state. The near-optimal policy
of HKLSPI causes the robot to reach the absorbing state in
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PD control
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Fig. 10. Performance comparison between HAPI and API both in the
simulated and real mobile robots.

TABLE III

PERFORMANCE COMPARISONS BETWEEN HAPI AND API

Data set 1 Data set 2 Data set 3

API HAPI API HAPI API HAPI

Ngoal 79 55 58 50 52 48

Etotal 183.7 106.3 116.3 101.7 116.1 100.9

a much shorter time, which is better than both KLSPI and
conventional PD control.

In addition to the results in Fig. 10, we tested the perfor-
mance of API and HAPI using difference sample sets and
different initial parameters and configurations and illustrated
that HKLSPI can obtain better performance than KLSPI using
the same sample sets and initialization parameters. Table III
summarizes the performance comparisons between HAPI and
API using three independent sample sets, where Ngoal is the
state transition steps to goal and Etotal denotes the summed
absolute tracking errors along the whole trajectory.

V. CONCLUSION

In the proposed HAPI method, an absorbing MDP auto-
matically divides into several sub-MDPs using the binary-
tree space decomposition procedure, and the optimal policy
of the original MDP can be approximated by the local near-
optimal policies. Based on the binary-tree state space decom-
position, the hierarchical optimality of the combined policy
can be guaranteed or approximated well. In HAPI, because
API algorithms are implemented in smaller sub-MDPs with
higher precision of policy evaluation, the performance errors
of local policies can be reduced. Therefore, because of its
hierarchical optimality or approximate hierarchical optimality,
the performance of the combined policy can also be improved
significantly.

For high-dimensional complex decision problems, exploring
the state space more efficiently was critical to the success
of HAPI, and some recent progress has been made, namely,
the fitted Rmax algorithm [45], the LSPI-Rmax algorithm
[46], and others. Furthermore, other learning-based state space
decomposition approaches for API in general MDPs require
further investigation. In this paper, although the proposed
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HAPI was successfully applied to an absorbing MDP with
stochastic state transitions, more theoretical analysis and per-
formance evaluations on stochastic MDPs will be our future
work.
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