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Abstract

In this paper, fixed-final time optimal control laws using neural networks and HJB equations for general affine in the input nonlinear systems
are proposed. The method utilizes Kronecker matrix methods along with neural network approximation over a compact set to solve a time-
varying HJB equation. The result is a neural network feedback controller that has time-varying coefficients found by a priori offline tuning.
Convergence results are shown. The results of this paper are demonstrated on an example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many practical engineering problems, one is inter-
ested in finding finite-time optimal control laws for non-
linear systems. It is known that this optimization problem
(Lewis & Syrmos, 1995), requires solving a time-varying
Hamilton–Jacobi–Bellman (HJB) equation that is hard to solve
in most cases. Approximate HJB solutions have been found
using many techniques such as those developed by Saridis and
Lee (1979), Beard (1995), Bertsekas and Tsitsiklis (1995) and
Kim, Lewis, and Dawson (2000). Huang and Lin (1995) pro-
vided a Taylor series expansion of the HJI equation which is
closely related to the HJB equation. A local H∞ controller is
derived in Aguilar, Orlov, and Acho (2003) using perturbation
methods.

Successful neural networks (NNs) controllers not based on
optimal techniques have been reported in Chen and Liu (1994).
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It has been shown that NN can effectively extend adaptive con-
trol techniques to nonlinearly parameterized systems. NN ap-
plications to an optimal control via the HJB equation were first
proposed by Miller, Sutton, and Werbos (1990). Parisini and
Zoppoli (1998) used NN to derive optimal control laws for
discrete-time stochastic nonlinear systems.

In this paper, we use NN to approximately solve the time-
varying HJB equation. It is shown that using a NN approach,
one can simply transform the problem into solving an ordinary
differential equation (ODE) backwards in time.

We were motivated by the important results in Beard (1995).
However, in contrast to that work, we are able to approximately
solve the time-varying HJB equation, and do not need to per-
form policy iteration using the so-called GHJB equation fol-
lowed by control law updates. We accomplish this by using a
NN approximation for the value function which is based on a
universal basis set, and by introduction of the Kronecker prod-
uct to handle bilinear terms. We also demonstrate uniform con-
vergence results over a Sobolev space.

2. Background on fixed-final time HJB optimal control

Consider an affine in the control nonlinear dynamical system
of the form

ẋ = f (x) + g(x)u(t), (1)
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where x ∈ Rn, f (x) ∈ Rn, g(x) ∈ Rn×m and the input
u(t) ∈ Rm. The dynamics f (x) and g(x) are assumed to be
known. Assume that f (x) + g(x)u(t) is Lipschitz continuous
on a set �0 ⊆ Rn containing the origin, and that system (1) is
stabilizable in the sense that there exists a continuous control
that asymptotically stabilizes the system on �0. It is desired to
find the control u(t) that minimizes a generalized nonquadratic
functional

V (x(t0), t0) = �(x(tf ), tf ) +
∫ tf

t0

[Q(x) + W(u)] dt (2)

with Q(x), W(u) positive definite on �0, i.e. ∀x �= 0, x ∈
�0, Q(x) > 0 and x = 0 ⇒ Q(x) = 0. A common choice for
W(u) = uTRu, where R > 0. The final time tf is fixed.

Definition 1. Admissible controls.

A control u is defined to be admissible with respect to (2)
on �0, denoted by u ∈ �(�0), if u is continuous, u(0) = 0, u
stabilizes (1) on �0, and ∀x0 = x(t0) ∈ �0, V (x0, t0) is finite.

An infinitesimal equivalent to (2) is (Lewis & Syrmos, 1995)

−�V (x, t)

�t
= �V T(x, t)

�x
(f (x)+g(x)u(t))+Q(x)+W(u). (3)

This is a time-varying partial differential equation that yields
the value V (x, t) for any given u and is solved backward in
time from t =tf . By setting t0 =tf in (2) its boundary condition
is seen to be

V (x(tf ), tf ) = �(x(tf ), tf ). (4)

For unconstrained control inputs, on substitution of the optimal
control (Lewis & Syrmos, 1995)

u∗(x) = −1

2
R−1gT �V ∗(x, t)

�x
, (5)

where V ∗(x, t) is the value function of the optimal control
problem that solves the HJB equation, (3) becomes the well-
known time-varying HJB equation,

HJB(V ∗(x, t)) = �V ∗(x, t)

�t
+ �V ∗(x, t)

�x
f + Q(x)

−1

4

�V ∗T(x, t)

�x
g(x)R−1gT(x)

�V ∗(x, t)

�x
=0.

(6)

This equation provides the solution to fixed-final time optimal
control for general nonlinear systems. However, this equation
is generally impossible to solve.

Remark 1. Optimal control problems do not necessarily have
smooth or even continuous value functions, (Huang, Wang,
& Teo, 2000). Lio (2000) used the theory of viscosity solutions
to show that for infinite horizon optimal control problems with
unbounded cost functional, under certain continuity assump-
tions of the dynamics, the value function is continuous on some

set �, V ∗(x, t) ∈ C(�). In this paper, all derivations are per-
formed under the assumption of smooth solutions to (6). A sim-
ilar assumption was made by Van der Schaft (1992) and Isidori
and Astolfi (1992).

3. Nonlinear fixed-final time HJB solution by NN
least-squares approximation

The HJB equation (6) is difficult to solve for the cost function
V (x, t). In this section, NNs are used to solve approximately
for the value function in (6) over � by approximating the cost
function V (x, t) uniformly in t. The result is an efficient, prac-
tical, and computationally tractable solution algorithm to find
nearly optimal state feedback controllers for nonlinear systems.

3.1. NN approximation of V (x, t)

It is well known that a NN can be used to approximate smooth
time-invariant functions on prescribed compact sets (Hornik,
Stinchcombe, & White, 1990). Since the analysis required
here is restricted to the region of asymptotically stable (RAS)
of some initial stabilizing controller, NN are natural for this
application. In Sandberg (1998), it is shown that NNs with
time-varying weights can be used to approximate uniformly
continuous time-varying functions. We assume that V (x, t)

is smooth, and so uniformly continuous on a compact set.
Therefore, one can use the following equation to approximate
V (x, t) for t ∈ [t0, tf ] on a compact set � ⊂ Rn:

VL(x) =
L∑

j=1

wj�j (x) = wT
L(t)�L(x). (7)

The set �j is selected to be independent. Then without loss
of generality, they can be assumed to be orthonormal, i.e. se-
lect equivalent basis functions to �j that are also orthonormal
(Bartle, 1976). The orthonormality of the set {�j }∞1 on � im-
plies that if a function �(x) ∈ L2(�) then

�(x) =
∞∑

j=1

〈�, �j 〉��j (x),

where 〈f, g〉� = ∫
� gf T dx.

Note that, since one requires �V (x, t)/�t in (6), the NN
weights are selected to be time varying. However, here �L(x)

is a NN activation vector, not a set of eigenfunctions. That
is, the NN approximation property significantly simplifies the
specification of �L(x). For the infinite final time case, the NN
weights are constant (Abu-Khalaf & Lewis, 2005). The NN
weights will be selected to minimize a residual error in a least-
squares sense over a set of points sampled from a compact set
� inside the RAS of the initial stabilizing control (Finlayson,
1972).

Note that

�VL(x, t)

�x
= ��T

L(x)

�x
wL(t) ≡ ∇�T

L(x)wL(t), (8)
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where ∇�L is the Jacobian ��L(x)/�x, and that

�VL(x, t)

�t
= ẇT

L(t)�L(x). (9)

Therefore, approximating V (x, t) by VL(x, t) uniformly in t in
the HJB equation (6) results in

ẇT
L(t)�L(x) + wT

L(t)∇�L(x)f (x)

− 1
4 wT

L(t)�L(x)g(x)R−1gT(x)�T
L(x)wL(t) + Q(x)

= eL(x, t), (10)

or

HJB

⎛
⎝VL(x, t) =

L∑
j=1

wj(t)�j (x)

⎞
⎠= eL(x, t), (11)

where eL(x, t) is a residual equation error. From (10) the cor-
responding optimal control input is

uL(x, t) = − 1
2R−1gT(x)∇�T

L(x)wL(t). (12)

To find the least-squares solution for wL(t), the method
of weighted residuals is used (Finlayson, 1972). The weight
derivatives ẇL(t) are determined by projecting the residual er-
ror onto �eL(x, t)/�ẇL(t) and setting the result to zero ∀x ∈ �
using the inner product, i.e.〈
�eL(x, t)

�ẇL(t)
, eL(x, t)

〉
�

= 0. (13)

From (11) we can get

�eL(x, t)

�ẇL(t)
= �L(x). (14)

Therefore, one obtains

ẇL(t) = 〈�L(x), �L(x)〉−1
� · 〈∇�L(x)f (x), �L(x)〉� · wL(t)

+ 〈�L(x), �L(x)〉−1
� ·

〈 1

4
wT

L(t)∇�L(x)g(x)R−1

· gT(x)∇�T
LwL(t), �L(x)

〉
�

− 〈�L(x), �L(x)〉−1
� · 〈Q(x), �L(x)〉� (15)

with boundary condition V (tf , x) = �(x(tf ), tf ).
Therefore, the NN weights are simply found by integrating

this nonlinear ODE backwards in time.
We now show that this procedure provides a nearly optimal

solution for the time-varying optimal control problem if time-
varying L is selected large enough.

3.2. Convergence of the method of least squares

In what follows, we show convergence results as L increases
for the method of least squares when NN are used to uniformly
approximate the cost of function in t.

Let F(t, x) be piecewise continuous in t and satisfy the Lip-
schitz condition

‖F(t, x) − F(t, y)‖�K‖x − y‖,

∀x, y ∈ B = {x ∈ Rn|‖x − x0‖�r}, ∀t ∈ [t0, t1], where K is
constant and ‖f ‖2 =〈f, f 〉. Then, there exists some � > 0 such
that the state equation ẋ =F(t, x) with x(t0)=x0 has a unique
solution over [t0, t0 + �]. (See Khalil, 2002.)

Definition 2. Sobolev space.

Hm,p(�): Let � be an open set in Rn and let u ∈ Cm(�).
Define a norm on u by

‖u‖m,p =
∑

0� |�|�m

(∫
�

|D�u(x)|p dx

)1/p

, 1�p < ∞.

This is the Sobolev norm in which the integration is Lebesgue.
The completion of u ∈ Cm(�): ‖u‖m,p < ∞ with respect to
‖ · ‖m,p is the Sobolev space Hm,p(�). For p = 2, the Sobolev
space is a Hilbert space.

The convergence proofs of the least-squares method are
done in the Sobolev function space H 1,2(�) setting (Adams &
Fournier, 2003), since we require to prove the convergence of
both VL(x, t) and its gradient.

We now show the following convergence results.

Lemma 1. Convergence of approximate HJB equation.

Given u ∈ �(�). Let VL(x, t) = ∑L
j=1w

T
j (t)�j (x) satisfy

〈HJB(VL(x, t)), �L(x, t)〉� = 0 and 〈VL(xf , tf ), �L〉� = 0,
and let V (x, t) =∑∞

j=1c
T
j (t)�j (x) and cL(t) ≡ [c1(t)c2(t) · · ·

cL(t)]T satisfy HJB(V (x, t)) = 0 and V (x(tf ), tf ) =
�(x(tf ), tf ).

If � is compact, Q(x) are continuous on � and are in the
space span{�j }∞1 , and if the coefficients |wj(t)| are uniformly
bounded for all L, then |HJB(VL(x, t))| → 0 uniformly in t on
� as L increases.

Proof. The hypotheses implies that HJB(VL(x, t)) are in
L2(�). Note that

〈HJB(VL(x, t)), �j (x)〉�

=
L∑

k=1

ẇT
k (t)〈�k(x), �j (x)〉�

+
L∑

k=1

wT
k (x)〈∇�k(x)f (x), �j (x)〉�

−
L∑

k=1

wT
k (t) ·

〈 1

4
∇�k(x)g(x)R−1

· gT(x)∇�T
k (x), �j (x)

〉
�

· wk(t)

+ 〈Q(x), �j (x)〉�. (16)
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Then

|HJB(VL(x, t))|

=
∣∣∣∣∣∣

∞∑
j=1

〈HJB(VL(x, t)),�j (x)〉��j (x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞∑
j=L+1

(
L∑

k=1
ẇT

k
(t)〈�k(x),�j (x)〉�

)
�j (x)

+
∞∑

j=L+1

(
L∑

k=1
wT

k
(t)〈∇�k(x)f (x),�j (x)〉�

)
�j (x)

−
∞∑

j=L+1

⎛
⎝ L∑

k=1
wT

k
(t)

〈 1

4
∇�k(x)g(x)R−1

· gT(x)∇�T
k
(x),�j (x)

〉
�

wk(t)

⎞
⎠�j (x)

+
∞∑

j=L+1
〈Q(x),�j (x)〉��j (x).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

Since the set {�j (x)}∞1 are orthogonal, 〈�k(x), �j (x)〉� = 0.
Therefore

|HJB(VL(x, t))|

�

∣∣∣∣∣∣
⎛
⎝ L∑

k=1

wk(t)

∞∑
j=L+1

〈∇�k(x)f (x),�j (x)〉� · �j (x)

⎞
⎠
∣∣∣∣∣∣

+
∣∣∣∣∣∣
⎛
⎝ L∑

k=1

w2
k (t) ·

∞∑
j=L+1

〈 1

4
∇�k(x)g(x)R−1

· gT(x)∇�T
k
(x),�j (x)

〉
�

· �j (x)

⎞
⎠
∣∣∣∣∣∣

+
∣∣∣∣∣∣

∞∑
j=L+1

〈Q(x),�j (x)〉��j (x)

∣∣∣∣∣∣

×
∣∣∣∣∣∣

∞∑
j=L+1

⎛
⎝ L∑

k=1

wT
k (t)〈∇�k(x)f (x),�j (x)〉�

⎞
⎠ · �j (x)

∣∣∣∣∣∣
�AB(x) + CD(x)

+ Vec

⎛
⎝
∣∣∣∣∣∣

∞∑
j=L+1

〈Q(x),�j (x)〉��j (x)

∣∣∣∣∣∣
⎞
⎠ , (18)

where

A = max
1�k �L

|wk(t)|,

B(x)= sup
(t,x)∈[t0,T ]×�

∣∣∣∣∣∣
L∑

k=1

⎛
⎝ ∞∑

j=L+1

〈∇�k(x)f (x),�j (x)〉�
⎞
⎠�j (x)

∣∣∣∣∣∣ ,

C = max
1�k �L

|w2
k (t)|,

D = sup
(t,x)∈[t0,T ]×�

∣∣∣∣∣∣
⎛
⎝ L∑

k=1

⎛
⎝ ∞∑

j=L+1

〈 1

4
∇�k(x)g(x)R−1

· gT(x)∇�T
k
(x),�j (x)

〉
�

⎞
⎠�j (x)

⎞
⎠
∣∣∣∣∣∣ .

Suppose ∇�k(x)f (x), 1
4∇�k(x)g(x)R−1gT(x)∇�T

k (x) and
Q(x) are in L2(�), the orthonormality of the set {�j (x)}∞1
implies that B(x) and the second and third term on the right-
hand side can be made arbitrarily small by an appropriate
choice of L.

Therefore

A · B(x) + C · D(x) → 0

and∣∣∣∣∣∣
∞∑

j=L+1

〈Q(x), �j (x)〉��j

∣∣∣∣∣∣ → 0.

So |HJB(VL(x, t))| → 0 uniformly in t on � as L increases.
�

Lemma 2. Convergence of NN weights.

Given u ∈ �(�) and suppose the hypotheses of Lemma 1
hold. Then ‖wL(t)−cL(t)‖2 → 0 uniformly in t as L increases.

Proof. Define eL(x, t) = HJB(VL(x, t)) and

êL(x, t) = VL(x(tf ), tf ) − �(x(tf ), tf ). (19)

Then 〈eL(x, t), �L(x)〉� = 〈êL(x, t), �L(x)〉� = 0. From the
hypotheses we have that

HJB(VL(x, t)) − HJB(V (x, t)) = eL(x, t),

(VL − V )(x, tf ) = êL(x, t), (20)

substituting the series expansion for VL(x, t) and V (x, t), and
moving the terms in the series that are greater than L to the
right-hand side we obtain

(ẇL(t) − ċL(t))T�L(x) + (wL(t) − cL(t))T∇�L(x)f (x)

− (wT
L(t) ⊗ wT

L(t) − cT
L(t) ⊗ cT

L(t))

· Vec

(
1

4
∇�L(x)g(x)R−1 · gT(x)∇�T

L(x)

)

=eL(x, t)+
∞∑

j=L+1

ċT
j (t)�j (x)+

∞∑
j=L+1

cT
j (t)∇�j (x)f (x)

+
∞∑

j=L+1

c2
j (t) ·

(
1

4
∇�j (x)g(x)R−1gT(x)∇�T

j (x)

)
,

(21)

(wL(t) − cL(t))T(tf )�L(x)

= êL(x, t) +
∞∑

j=L+1

cj (tf )�j (x). (22)

Taking the inner product of both sides over �, and taking into
account the orthonormality of the set {�j }∞1 , we obtain

(ẇL(t) − ċL(t)) + 〈∇�L(x)f (x),�L(x)〉T
�(wL(t) − cL(t))

−
〈

1

4
Vec(∇�L(x)g(x)R−1gT(x)∇�T

j (x)),�L(x)

〉T
�

· (wL(t) ⊗ wL(t) − cL(t) ⊗ cL(t))

=
∞∑

j=L+1

cj (t)〈∇�j (x)f (x),�L(x)〉T
�

+
∞∑

j=L+1

c2
j (t)

〈
1

4
∇�j (x)g(x)R−1gT(x)∇�T

j (x),�L(x)

〉T
�

× (wL(t) − cL(t))(tf ) = 0. (23)
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Let A = 〈∇�L(x)f (x), �L(x)〉T
�, where A is scalar.

Define 	 = wL(t) − cL(t), consider the equation

	̇ + A(t) · 	 + f (	, t) = 0,

	(tf ) = 0, (24)

where

f (	, t) = −
〈

1

4
Vec(∇�L(x)g(x)R−1gT(x)∇�T

L(x)), �L(x)

〉T

�

· (wL(x) ⊗ wL(x) − cL(x) ⊗ cL(x))

is continuously differentiable in a neighborhood of a point
(	0, t0). Since A(t) is also piecewise continuous functions of
t, over any finite interval of time [t0, tf ], the elements of A(t)

and f (	, t) are bounded. Hence, ‖A(t)‖�a, ‖f (	, t)‖�b and

‖f (x, t) − f (y, t)‖ = ‖A(t)(x − y)‖
�‖A(t)‖‖x − y‖�a‖x − y‖

∀x, y ∈ Rn, ∀t ∈ [t0, tf ]
also

‖f (x0, t)‖ = ‖A(t)x0 + f (x, t)‖�a‖x0‖ + b�h,

for each finite x0, ∀t ∈ [t0, tf ].
Therefore, the system has a unique solution over [t0, tf ].

Since tf can be arbitrarily large, we can also conclude that
if A(t) and f (x, t) are piecewise continuous ∀t � t0, then the
system has a unique solution ∀t � t0, so (24) can satisfy a local
Lipschitz condition (Khalil, 2002).

Noting that

∞∑
j=L+1

cj (t)〈∇�j (x)f (x), �L(x)〉T
�

+
∞∑

j=L+1

c2
j (t)

〈
1

4
∇�j (x)g(x)R−1gT(x)∇�T

j (x), �L(x)

〉T

�

is continuous in t, we invoke the standard result from the theory
of ODEs that a continuous perturbation in the system equations
and the initial state implies a continuous perturbation of the
solution (Arnold, 1973). Note that∥∥∥∥∥∥∥∥∥

∞∑
j=L+1

cj (t)〈∇�j (x)f (x), �L(x)〉T
�

+
∞∑

j=L+1
c2
j (t)

〈( 1

4
∇�j (x)g(x)R−1

· gT(x)∇�T
j (x)

)
, �L(x)

〉
�

∥∥∥∥∥∥∥∥∥
L2(�)

�

∥∥∥∥∥∥
∞∑

j=L+1

cj (t) · 〈∇�L(x)f (x), �L(x)〉T
�

∥∥∥∥∥∥
L2(�)

+
∥∥∥∥∥∥

∞∑
j=L+1

c2
j (t)

〈 1

4
∇�j (x)g(x)R−1

· gT(x)∇�T
j (x), �j (x)

〉
�

∥∥∥∥∥∥
L2(�)

= 
(t),

here 
(t) → 0 as L increases.

This implies that for all � > 0, there exists a 
(t) > 0 such
that ∀t ∈ [t0, tf ],

‖wL(t) − cL(t)‖2 < �. (25)

So ‖wL(t) − cL(t)‖2 → 0 uniformly in t on � as L increases.
�

Lemma 3. Convergence of approximate value function.

Under the hypotheses of Lemma 1, one has ‖VL(x, t) −
V (x, t)‖L2(�) → 0 uniformly in t on � as L increases.

Proof.

‖VL(x, t) − V (x, t)‖2
L2(�)

=
∫
�

|VL(x, t) − V (x, t)|2 dx

�
∫
�

|(wL(t) − cL(t))T�L(x)|2 dx

+
∫
�

∣∣∣∣∣∣
∞∑

j=L+1

cj (t)�j (x)

∣∣∣∣∣∣
2

dx

= (wL(t) − cL(t))T〈�L(x), �T
L(x)〉�(wL(t) − cL(t))

+
∫
�

∣∣∣∣∣∣
∞∑

j=L+1

cj (t)�j (x)

∣∣∣∣∣∣
2

dx.

By the mean value theorem, ∃	 ∈ � such that

‖VL(x, t) − V (x, t)‖2
L2(�)

= ‖wL(t) − cL(t)‖2
2 + �(�) ·

∣∣∣∣∣∣
∞∑

j=L+1

cj (t)�j (	)

∣∣∣∣∣∣
2

→ 0

uniformly in t on � as L increases. �

Lemma 4. Convergence of value function gradient.

Under the hypotheses of Lemma 1,

∥∥∥∥�VL(x, t)

�x
− �V (x, t)

�x

∥∥∥∥
L2(�)

→ 0 uniformly in t

on � as L increases.
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Proof. From Lemma 2, we have ‖wL(t) − cL(t)‖2 → 0,∥∥∥∥�VL(x, t)

�x
− �V (x, t)

�x

∥∥∥∥
2

L2(�)

�‖∇�T
L(x)(wL(t) − cL(t))‖2

L2(�)

+
∥∥∥∥∥∥

∞∑
j=L+1

∇�T
j (x)cj (t)

∥∥∥∥∥∥
2

L2(�)

= ‖∇�T
L(x)(wL(t) − cL(t))‖2

L2(�)

+
∫

L2(�)

∣∣∣∣∣∣
∞∑

j=L+1

∇�T
L(x)cj (t)

∣∣∣∣∣∣
2

dx.

By the mean value theorem ∃	 ∈ � such that∥∥∥∥�VL(x, t)

�x
− �V (x, t)

�x

∥∥∥∥
2

L2(�)

= ‖∇�T
L(x)(wL(t) − cL(t))‖2

L2(�)

+ �(�)

∣∣∣∣∣∣
∞∑

j=N+1

∇�T
j (x)cj (t)

∣∣∣∣∣∣
2

.

Since ∇�T
L is linear independent and ‖wL(t) − cL(t)‖2 → 0,

then ‖�VL(x, t)/�x − �V (x, t)/�x‖L2(�) → 0 uniformly in t
on � as L increases. �

Lemma 5. Convergence of control inputs.

If the conditions of Lemma 1 are satisfied and

uL(x, t) = − 1
2R−1gT(x, t)∇VL(x, t),

u(x, t) = − 1
2R−1gT(x, t)∇V (x, t).

Then ‖uL(x, t) − u(x, t)‖L2(�) → 0 uniformly in t on � as L
increases.

Proof.

‖uL(x, t) − u(x, t)‖L2(�)

�
∥∥∥∥−1

2
R−1gT(x)∇�T

L(x)(wL(t) − cL(t))

∥∥∥∥
L2(�)

+
∥∥∥∥∥∥

1

2

∞∑
j=L+1

cj (t)R
−1gT(t)∇�j (x)

∥∥∥∥∥∥
L2(�)

.

So u(x, t) = − 1
2

∑∞
j=1cj (t)R

−1gT(x)∇�j (x) implies that the
second term on the right-hand side converges to 0. By Lemma
2, Technical Lemmas 2 and 4, we know that

‖∇�T
L(x)(wL(t) − cL(t))‖L2(�) → 0.

Since R−1gT(x, t) in continuous on � × [t0, tf ] and hence
uniformly bounded, we have that

‖R−1gT(x)∇�T
L(x)(wL(t) − cL(t))‖L2(�) → 0. �

Lemma 6. Convergence of state trajectory.

Let xL(t) be the state using control (12), suppose the hy-
potheses of Lemma 1 hold. Then x(t) − xL(t) → 0 uniformly
in t on � as L increases.

Proof.

ẋ(t) = f (x) + g(x)u(t) = f (x) − 1

2
g(x)R−1gT(x)

�V (x, t)

�x
,

ẋL(t) = f (xL) + g(xL)u(t)

= f (xL) − 1

2
g(xL)R−1gT(xL)

�V (xL, t)

�xL

,

xL(t0) = x(t0).

Since f (x) − f (xL)�L‖x − xL‖
ẋ(t) − ẋL(t)

= f (x) − f (xL)

−

⎛
⎜⎜⎝

1

2
g(x)R−1gT(x)

�V (x, t)

�x

−1

2
g(xL)R−1gT(xL)

�VL(xL, t)

�xL

⎞
⎟⎟⎠

�L‖x−xL‖

−

⎛
⎜⎜⎝

1

2
‖R−1‖ · (‖g(x)‖2

2−‖g(xL)‖2
2)

�V (x, t)

�x

+1

2

(
g(xL)R−1gT(xL)

(
�V (x, t)

�x
−�V (xL, t)

�xL

))
⎞
⎟⎟⎠ .

Define

x̃(t) = x(t) − xL(t).

Consider the equation

˙̃x − L‖x̃‖ + h(x̃, t) = 
(x), (26)

x̃(t0) = 0,

where

h(x̃, t) = −
(

1

2
‖R−1‖ · (‖g(x)‖2

2 − ‖g(xL)‖2
2)

�V (x, t)

�x

)
,


(x) = −1

2

(
g(xL)R−1gT(xL)

(
�V (x, t)

�x
− �V (xL, t)

�xL

))

are continuously differentiable in a neighborhood of a point
(x̃0, t0). Over any finite interval of time [t0, tf ], the elements
of h(x̃, t) are bounded. Therefore, (26) has a unique solution.
From Lemma 4, 
(x) → 0 as L increases. We invoke the
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standard result from the theory of ODEs, as in Lemma 2 proof,
so that ‖x̃‖ → 0 uniformly in t on � as L increases. �

Now, select the �0 in Definition 1 so that �0 ⊂ � and ∀x0 ∈
�0, x(t) ∈ �, ∀t ∈ [t0, tf ]. Then, according to Lemma 6, for
L large enough, xL(t) ∈ �, ∀t ∈ [t0, tf ]. Therefore, the NN
approximation property (7) holds to t ∈ [t0, tf ].

At this point we have proven uniform convergence in t in
the mean of the approximate HJB equation, the NN weights,
the approximate value function, the value function gradient and
the state trajectory. This demonstrates uniform convergence in
t in the mean in Sobolev space H 1,2(�). In fact, the next result
shows even stronger convergence properties.

Lemma 7. Uniform convergence.

Since a local Lipschitz condition holds on (24), then

sup
x∈�

|VL(x, t) − V (x, t)| → 0, sup
x∈�

|uL(x, t) − u(x, t)| → 0,

and

sup
x∈�

∣∣∣∣�VL(x, t)

�x
− �V (x, t)

�x

∣∣∣∣ → 0.

Proof. This follows by noticing that ‖wL(t) − cL(t)‖2
2 → 0

uniformly in t and the series with cj is uniformly convergent
in t, and Hornik et al. (1990). �

The final result shows that if the number L of input-layer
units is large enough, the proposed solution method yields an
admissible control.

Lemma 8. Admissibility of uL(x).

If the conditions of Lemma 1 are satisfied, then ∃L0 :
L�L0, uL ∈ �(�).

Proof. Define

V (x, W) = �(x(tf ), tf ) +
∫ tf

t0

[Q(x) + W(u)] dt .

We must show that for L sufficiently large, V (x, uL) < ∞ when
V (x, u) < ∞. But �(x(tf ), tf ) depends continuously on W ,
i.e., small variations in W result in small variations in �. Also
since ‖uL(·)‖2

L2(�)
can be made arbitrarily close to ‖u(·)‖2

L2(�)
,

V (x, uL) can be made arbitrarily close to V (x, u). Therefore,
for L sufficiently large, V (x, uL) < ∞ and hence uL(x) is ad-
missible. �

3.3. Optimal algorithm based on NN approximation

Solving the integration in (15) is expensive computationally.
Since evaluation of the L2 inner product over � is required.
This can be addressed using the collocation method (Finlayson,
1972). The integrals can be well approximated by discretization.
A mesh of points over the integration region can be introduced

on � of size �x. The terms of (15) can be rewritten as follows:

A = [�L(x)|x1 . . . �L(x)|xp ]T,

B = [�L(x)f (x)|x1 . . . �L(x)f (x)|xp ]T,

C =
⎡
⎢⎣

1

4
(∇�L(x)g(x)R−1gT(x)∇�T

L(x))|x1 . . .

1

4
(∇�L(x)g(x)R−1gT(x)∇�T

L(x))|xp

⎤
⎥⎦

T

,

D = [Q(x)|x1 . . . Q(x)|xp ]T,

where p in xp represents the number of points of the mesh.
Reducing the mesh size, we have

〈−ẇT
L(t)�L(x), �L(x)〉�= lim

‖�x‖→0
−(ATA) · ẇL(t) · �x, (27)

〈−wT
L(t)∇�L(x)f (x), �L(x)〉�

= lim
‖�x‖→0

−(ATB) · wL(t) · �x, (28)

〈
1

4
wT

L(t)∇�L(x)g(x)R−1 · gT(x)∇�T
LwL(t), �L(x)

〉
�

= lim
‖�x‖→0

ATwT
L(t)CwL(t) · �x, (29)

〈−Q(x), �L(x)〉� = lim
‖�x‖→0

−(AT · D) · �x. (30)

This implies that (15) can be converted to

ẇL(t) = − (ATA)−1wL(t)ATB

+ (ATA)−1ATwT
L(t)CwL(t) − (ATA)−1ATD. (31)

This is a nonlinear ODE that can easily be integrated backwards
using final condition wL(tf ) to find the least-squares optimal
NN weights. Then, the nearly optimal value function is given
by

VL(x, t) = wT
L(t)�L(x),

and the nearly optimal control by

uL(t) = − 1
2R−1gT(x)∇�T

L(x)wL(t). (32)

Note that in practice, we use a numerically efficient least-
squares relative to solve (31) without matrix inversion.

Remark 2. The closed-loop NN least-squares policy gives cor-
rect answer as long as x ∈ �, this control policy would be
valid as long as x(t) remains in � for all t. This means the set
of initial condition �, which guarantees that x(t) ∈ � for all
x(t) is smaller than � itself. This can be enlarged by carefully
selecting larger size of NN.

4. Simulation

We now show the power of our NN control technique for
finding nearly optimal fixed-final time controllers to a mobile
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Fig. 1. Nonlinear system weights.

robot, which is a nonholonomic system (Kolmanovsky &
McClamroch, 1995). It is known (Brockett, 1983) that there
does not exist a continuous time-invariant feedback control
law that minimizes the cost. Our method will yield a time-
varying gain. From Murray and Sastry, 1991 [32], under some
sufficient conditions, a nonholonomic system can be converted
into chained form as

ẋ1 = u,

ẋ2 = v,

ẋ3 = x1v. (33)

Define performance index

V (x(t0), t0) = �(x(tf ), tf ) +
∫ T

t0

(Q(x) + W(u)) dt .

Here Q and R are chosen as identity matrices. To solve for
the value function of the related optimal control problem, we
selected the smooth approximating function

V (x1, x2, x3) = w1x
2
1 + w2x

2
2 + w3x

2
3 + w4x1x2

+ w5x1x3 + w6x2x3 + w7x
4
1 + w8x

4
2

+ w9x
4
3 + w10x

2
1x2

2 + w11x
2
1x2

3 + w12x
2
2x2

3

+ w13x
2
1x2x3 + w14x1x

2
2x3 + w15x1x2x

2
3

+ w16x
3
1x2 + w17x

3
1x3 + w18x1x

3
2

+ w19x1x
3
3 + w20x2x

3
3 + w21x

3
2x3. (34)

The selection of the NN is usually a natural choice guided by
engineering experience and intuition. This is a NN with polyno-
mial activation functions, and hence V (0) = 0. This is a power
series NN with 21 activation functions containing powers of
the state variable of the system upto the fourth order. Conver-
gence was not observed using a NN with only second-order
powers of the states. The number of neurons required is chosen
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Fig. 2. State trajectory of nonlinear system.
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Fig. 3. Optimal NN control law.

to guarantee the uniform convergence of the algorithm. In this
example,

wL(tf ) = [10; 10; 10; 0; 0; 0; 10; 10; 10; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0]

and tf = 30 s.
Fig. 1 indicates that weights converge to constant when they

are integrated backwards. The time-varying controller (32) is
then applied using interpolation. Fig. 2 shows that the systems’
states response, including x1, x2, and x3 are all bounded. It can
be seen that the states do converge to a value close to the origin.
Fig. 3 shows the optimal control converges to zero.
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5. Conclusion

We use NN to approximately solve the time-varying HJB
equation. The technique can be applied to both linear and non-
linear systems. Full conditions for convergence have been de-
rived. Simulation examples have been carried out to show the
effectiveness of the proposed method.
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