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Control of Nonstrict Nonlinear Discrete-Time

Systems With Application to
Engine Emission Control

Peter Shih, Brian C. Kaul, Sarangapani Jagannathan, Senior Member, IEEE, and James A. Drallmeier

Abstract—A novel reinforcement-learning-based output adap-
tive neural network (NN) controller, which is also referred to
as the adaptive-critic NN controller, is developed to deliver the
desired tracking performance for a class of nonlinear discrete-time
systems expressed in nonstrict feedback form in the presence
of bounded and unknown disturbances. The adaptive-critic NN
controller consists of an observer, a critic, and two action NNs.
The observer estimates the states and output, and the two action
NNs provide virtual and actual control inputs to the nonlinear
discrete-time system. The critic approximates a certain strategic
utility function, and the action NNs minimize the strategic utility
function and control inputs. All NN weights adapt online to-
ward minimization of a performance index, utilizing the gradient-
descent-based rule, in contrast with iteration-based adaptive-critic
schemes. Lyapunov functions are used to show the stability of
the closed-loop tracking error, weights, and observer estimates.
Separation and certainty equivalence principles, persistency of
excitation condition, and linearity in the unknown parameter as-
sumption are not needed. Experimental results on a spark ignition
(SI) engine operating lean at an equivalence ratio of 0.75 show
a significant (25%) reduction in cyclic dispersion in heat release
with control, while the average fuel input changes by less than
1% compared with the uncontrolled case. Consequently, oxides of
nitrogen (NOx) drop by 30%, and unburned hydrocarbons drop
by 16% with control. Overall, NOx’s are reduced by over 80%
compared with stoichiometric levels.

Index Terms—Adaptive critic, discrete-time system, engine
emission control, nonstrict nonlinear output feedback, reinforce-
ment learning control.

I. INTRODUCTION

ADAPTIVE neural network (NN) backstepping control of
nonlinear discrete-time systems in strict feedback form
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given by

xi(k + 1) = fi (x̄i(k)) + gi (x̄i(k)) xi+1(k) (1)

xn(k + 1) = fn (x̄n(k)) + gn (x̄n(k)) u(k) (2)

has been addressed in the literature [1]–[3], where xi(k) ∈ �
is the state, u(k) ∈ � is the control input, the term x̄i(k) =
[x1(k), . . . , xi(k)]T ∈ �i, and i = 1, . . . , (n − 1). For strict
feedback nonlinear systems [1], the nonlinearities fi(x̄i(k))
and gi(x̄i(k)) depend on states x1(k), . . . , xi(k), i.e., x̄i(k).
However, for nonstrict feedback nonlinear systems, fi(x̄i(k))
and gi(x̄i(k)) depend on both x̄i(k) and xi+1(k), and there are
no currently available control design schemes. Even if the non-
strict feedback nonlinear discrete-time system is transformed
into an equivalent form, the nonlinearities are still dependent
upon all the states. Available [1]–[3] methods applied to non-
linear discrete-time systems in nonstrict feedback form will
result in a noncausal controller (current control input depends
on future system states), even if the system is of second order
and when the adaptive NN backstepping approach is utilized.
Finally, no optimization is carried out in control designs for
strict feedback discrete-time systems, whereas a simple track-
ing error is utilized as a performance measure.

Available NN controller designs employ online NN training
based on classical adaptive control [3], where a short-term sys-
tem performance measure is defined by using the tracking error.
By contrast, the reinforcement-learning-based adaptive-critic
NN approach [4] has emerged as a promising tool to develop
optimal NN controllers due to its potential to find approximate
solutions to dynamic programming, where a strategic utility
function, which is considered as the long-term system perfor-
mance measure, can be optimized. In supervised learning, an
explicit signal is provided by the teacher to guide the learning
process, whereas in the case of reinforcement learning, the role
of the teacher is more evaluative than instructional in nature.
The critic NN monitors the system states and approximates the
strategic utility function, with a potential for a look-ahead and
better training of the action NN that generates the control action
to the system.

There are many variants of adaptive-critic NN controller
architectures [4]–[9] using state feedback, even though few
results [6]–[9], [17] address convergence. These controllers
are limited to affine nonlinear discrete-time systems. Such
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adaptive-critic NN controller results are not available for non-
linear discrete-time systems in nonstrict feedback form. It is
important to note that a nonstrict feedback system by no means
can be represented as a strict feedback system through analyti-
cal manipulation.

In this paper, a novel adaptive-critic NN-based output-
feedback controller is developed to control a class of nonlinear
discrete-time systems of second order in nonstrict feedback
form with bounded and unknown disturbances. The backstep-
ping methodology [1], [2] is utilized for controller design
with two action NNs being used to generate the virtual and
actual control inputs, respectively. The critic NN approximates
certain strategic utility function that is a variant of the standard
Bellman equation. The two action NN weights are tuned by
the critic NN signal to minimize the strategic utility function
and their outputs (or control inputs). The NN observer gen-
erates the estimates of the system states and output, which
are subsequently used in controller design. The proposed con-
troller is model free, since the dynamics of nonlinear discrete-
time systems are unknown, and NN weights are tuned online.
Reinforcement learning is accomplished online unlike exist-
ing adaptive-critic schemes, where an iterative approach is
normally utilized. Controller extensions to an nth-order non-
strict feedback nonlinear discrete-time system are also briefly
discussed.

The main contributions of this paper can be summarized as
follows: 1) The adaptive NN backstepping scheme is extended
to nonstrict feedback nonlinear discrete-time systems using the
adaptive-critic approach; optimization of a long-term perfor-
mance index is undertaken in contrast with traditional adaptive
NN backstepping schemes [1], [2] where no optimization is
performed; 2) demonstration of the boundedness of the overall
system is shown even in the presence of NN approximation
errors and bounded unknown disturbances, unlike in existing
adaptive-critic works [7]–[9] where convergence is presented
under ideal circumstances and in an iterative manner; 3) sta-
bility proof is inferred, even with an NN observer, by relaxing
the separation principle via novel weight update rules and by
selecting the Lyapunov function consisting of system estima-
tion errors, tracking, and NN weight estimation errors for the
adaptive-critic approach. Such mathematically proven stable
output-feedback control approaches using adaptive critics are
not presented in literature.

The proposed controller is evaluated on a spark ignition (SI)
engine model operating lean, which is a practical nonstrict
feedback nonlinear discrete-time system of second order. The
controller allows the engine to operate in the lean regime,
where small stoichiometric ratio of fuel to air is injected in
each cycle. Operating an engine lean will result in cyclic
dispersion in heat release that makes the engine performance to
degrade, ultimately becoming unstable. The controller enables
the engine to operate leaner compared with the uncontrolled
case by reducing the heat-release dispersion while minimizing
the fuel intake, which is the control input. Consequently, fuel
conversion efficiency is improved, and engine-out emissions
decrease due to lean operation. Although an SI engine with a
three-way catalyst cannot be operated lean, the objective is to
control an SI engine that is used for other applications such

as scooters and lawn mowers, where a three-way catalyst is
not normally used. Alternatively, the proposed scheme could
be used with the new generation of lean NOx catalyst systems
that are currently under development.

In our previous work [18], an adaptive backstepping ap-
proach is utilized to control an SI engine operating with high
exhaust gas recirculation levels. This system is represented as
a complex discrete-time system consisting of a combination of
nonstrict feedback and affine nonlinear discrete-time systems,
which is significantly different from the proposed work. On the
other hand, in [16], an online tracking controller is introduced
for a class of nonstrict feedback nonlinear discrete-time systems
with the potential application to an engine operating lean.
However, no optimization is carried out, since reinforcement
learning is not employed. The results from this proposed work
are compared with that of our previous works. Finally, the
proposed control scheme can easily be extended to nth-order
discrete-time systems.

II. CONTROLLER DESIGN

A. Nonlinear Nonstrict Feedback Discrete-Time Systems

Consider the nonlinear discrete-time system, which is given
in the following form:

x1(k + 1) = f1 (x1(k), x2(k))

+ g1 (x1(k), x2(k)) x2(k) + d1(k) (3)

x2(k + 1) = f2 (x1(k), x2(k))

+ g2 (x1(k), x2(k)) u(k) + d2(k) (4)

y(k) = f3 (x1(k), x2(k)) (5)

where xi(k) ∈ �, i = 1, 2, are the states, u(k) ∈ � is the sys-
tem input, and d1(k) ∈ � and d2(k) ∈ � are the unknown but
bounded disturbances whose bounds are given by |d1(k)|<d1m

and |d2(k)| < d2m, with d1m and d2m being the known positive
scalars. Here, the nonlinearities are considered unknown. The
system output is an unknown nonlinear function of the states in
contrast with that in the available literature [11], [12] where the
output is considered as a linear function of the states. Finally,
only the output is considered measurable, whereas the states
are not available for measurement. An additional constraint
that has to be satisfied is that the states have to be close to
their respective target values for the proposed application of SI
engine control. Then, the fuel-to-air ratio, which is defined as
the ratio of the second state to the first one has to be close to
its target value. Since the nonstrict feedback nonlinear discrete-
time system cannot be expressed in the form of strict feedback
via analytical manipulation, a new control design is introduced
by using an observer.

To overcome the immeasurable states, namely, x1(k) and
x2(k), an observer is utilized, where the current heat-release
output y(k) is employed to estimate the future output ŷ(k + 1)
and states x̂1(k + 1) and x̂2(k + 1). The design of the observer
will be discussed next.
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B. Observer Design

Consider the system output equation (4). Since the output
function is considered unknown, we use a two-layer feedfor-
ward NN with semirecurrent architecture and novel weight
tuning to construct the output as

y(k + 1) = wT
1 φ

(
vT
1 z1(k)

)
+ ε (z1(k)) (6)

where z1(k) = [x1(k), x2(k), y(k), u(k)]T ∈ R4 is the net-
work input; y(k + 1) and y(k) are the future and current output
values; w1 ∈ �n1 and v1 ∈ �2×n1 denote the ideal output and
constant hidden-layer weights, respectively; u(k) is the control
input; φ(vT

1 z1(k)) represents the hidden-layer activation func-
tion; n1 is the number of hidden-layer nodes; and ε(z1(k)) ∈ �
is the approximation error. For convenience, the two equations
can be represented as

φ1(k) = φ
(
vT
1 z1(k)

)
(7)

ε1(k) = ε (z1(k)) . (8)

Rewrite (6) using (7) and (8) to obtain

y(k + 1) = wT
1 φ1(k) + ε1(k). (9)

The states x1(k) and x2(k) are not measurable; therefore,
z1(k) is not available either. Using the estimated states and
measured output x̂1(k), x̂2(k), and y(k), respectively, instead
of x1(k), x2(k), and y(k), the proposed observer is given as

ŷ(k + 1) = ŵT
1 (k)φ

(
vT
1 ẑ1(k)

)
+ l1ỹ(k)

= ŵT
1 (k)φ̂1(k) + l1ỹ(k) (10)

where ẑ1(k) = [x̂1(k), x̂2(k), y(k), u(k)]T ∈ R4 is the NN in-
put vector using the estimated states, ŷ(k + 1) and ŷ(k) are
the estimated future and current outputs, ŵ1(k) is the actual
weight matrix, φ̂1(k) is the hidden-layer activation function,
l1 ∈ R is the observer gain, and ỹ(k) is the output estimation
error defined as

ỹ(k) = ŷ(k) − y(k). (11)

It is demonstrated in [13] that if the hidden-layer weights
v1’s are chosen initially at random and are kept constant, and
the number of hidden-layer nodes is sufficiently large, then the
approximation error ε(z1(k)) can be made arbitrarily small so
that the bound ‖ε(z1(k))‖ ≤ ε1m holds for all z1(k) ∈ S in a
compact set, since the activation function vector forms a basis
to the nonlinear function that the NN approximates. Now, we
choose, at our convenience, the observer structure as a function
of output estimation errors and known quantities as

x̂1(k + 1) = f10 − x̂2(k) + l2ỹ(k) (12)

x̂2(k + 1) = f20 + g20u(k) + l3ỹ(k) (13)

where l2 ∈ R and l3 ∈ R are the design constants, and f10,
f20, and g20 are the known nominal values for the unknown
nonlinear functions. These nominal values can be obtained by a
variety of ways, including Taylor series expansion and without

ignoring higher order terms lumped as uncertain higher-order
nonlinear terms. The expansion of the nonlinear functions is not
required, and the higher-order terms are not ignored, except that
their nominal values have to be known. The reason for requiring
limited information from this unknown system is the uncertain
system dynamics and their output relationship that is considered
nonlinear and unknown. As a consequence, it is not possible
to design an observer if everything is considered unknown.
At least, some information in the form of nominal values
has to be given to design an observer that is consistent with
all available control literature [14]. The experimental section
indeed presents how these nominal values can be obtained for a
practical system.

C. Observer Error Dynamics

Define the state estimation and output errors as

x̃i(k + 1) = x̂i(k + 1) − xi(k + 1), i ∈ {1, 2} (14)

ỹ(k + 1) = ŷ(k + 1) − y(k + 1). (15)

Combine (3)–(6) and (12)–(15) to obtain the estimation and
output error as

x̃1(k + 1) = f10 − x̂2(k) + l2ỹ(k)

− f1(·) − g1(·)x2(k) − d1(k) (16)

x̃2(k + 1) = f20 + g20u(k) + l3ỹ(k)

− f2(·) − g2(·)u(k) − d2(k) (17)

ỹ(k + 1) = ŵT
1 (k)φ̂1(k) + l1ỹ(k)

− wT
1 φ1(k) − ε1(k). (18)

Now select the weight tuning of the observer NN as

ŵ1(k+1)= ŵ1(k)−α1φ̂1(k)
(
ŵT

1 (k)φ̂1(k)+l4ỹ(k)
)

(19)

where α1 ∈ R and l4 ∈ R are the design constants.
Remark: The observer structure has direct implication on the

stability, since the observer dynamics have to be considered
in the Lyapunov proof. Normally, when the observer error
dynamics are derived, the control input is eliminated, whereas,
due to the expansion of the unknown dynamics into a known
and an unknown part, the elimination of the control input is not
possible here, making the stability proof difficult.

However, it will be shown that, by using the aforementioned
weight tuning, the separation principle is relaxed, and the
closed-loop signals will be bounded in Theorem 2. Next, we
present the following theorem, where it is demonstrated that the
state and output estimation errors and the observer NN weight
estimation errors are bounded, provided that the control input
is bounded, and in Theorem 2, it is relaxed. The following mild
assumptions are required.

Assumption 1: The unknown smooth functions, i.e., f2(·)
and g2(·), are upper bounded within the compact set S as
f2max > |f2(k)| and g2max > |g2(k)|, respectively.

Definition 1 [10], [14]: The state vector of the closed-loop
system is said to be uniformly ultimately bounded (UUB) if
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there exists a compact set S ⊂ �n so that, for all x0 ∈ S,
there exists a bound μ ≥ 0 and a number N(μ, x0) such that
‖x(k)‖ ≤ μ for all k ≥ k0 + N .

Theorem 1 (Observer Stability): Consider the system given
by (3)–(5), and let the disturbance bounds d1m and d2m be
known constants. Let the observer NN weight tuning be given
by (19). The state estimation errors x̃1(k) and x̃2(k), output
estimation error ỹ(k), and observer NN weight estimation error
w̃1(k) are UUB, provided that the input is bounded, with
the bounds specifically given by (35)–(38), provided that the
observer design parameters are selected as

1) 0 < α1 ‖φ1(k)‖2 < 1 (20)

2) |l1| <
1√
3

(21)

3) |l2| <

√
3

3
(22)

4) |l3| <

√
3

3
(23)

5) |l4| <
1√
6

(24)

where α1 is the NN adaptation gain, and l1, l2, l3, and l4 are the
observer parameters.

Proof: Define the Lyapunov function

J(k) =
4∑

i=1

Ji(k)

=
γ1

α1
w̃T

1(k)w̃1(k)+
γ2

3
x̃2

1(k)+
γ3

2
x̃2

2(k)+
γ4

3
ỹ2 (25)

where 0 < γi, i ∈ {1, 2, 3, 4}, are the auxiliary constants. Take
the first difference of the first term, and substitute (19) to get

J1(k) =
γ1

α1
w̃T

1 (k)w̃1(k)

α1

γ1
ΔJ1(k) = w̃T

1 (k + 1)w̃1(k + 1) − w̃T
1 (k)w̃1(k)

=
[
w̃T

1 (k) − α1

(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)T

φ̂T
1 (k)

]

∗
[
w̃1(k) − α1φ̂1(k)

(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)]

− w̃T
1 (k)w̃1(k)

=α2
1 ‖φ1(k)‖2

(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)2

− 2α1w̃1(k)φ̂1(k)
(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)

+ α1

(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)2

− α1

(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)2

= − α1

(
1 − α1

∥∥∥φ̂1(k)
∥∥∥2

)

∗
(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)2

+ α1

((
ζ1(k) + wT

1 φ̂1 + l4ỹ(k)
)
− ζ1(k)

)2

− α1ζ
2
1 (k)

= − α1

(
1 − α1

∥∥∥φ̂1(k)
∥∥∥2

)

∗
(
ŵT

1 (k)φ̂1(k) + l4ỹ(k)
)2

+ α1

(
wT

1 φ̂1(k) + l4ỹ(k)
)2

− α1ζ
2
1 (k) (26)

where ζ1(k) = w̃T
1 (k)φ̂1(k) = ŵT

1 (k)φ̂1(k) − wT
1 φ̂1(k).

Invoke the Cauchy–Schwarz inequality defined as

(a1b1 + · · · + anbn)2≤
(
a2
1 + · · · + a2

n

) (
b2
1 + · · · + b2

n

)
(27)

and simplifying the first difference in (26) to get

ΔJ1(k) ≤ −γ1

(
1 − α1

∥∥∥φ̂1(k)
∥∥∥2

)(
ŵ1(k)φ̂1(k) + l4ỹ(k)

)2

+ 2γ1(w1mφ̂1m)2 + 2γ1l
2
4ỹ

2(k) − γ1ζ
2
1 (k) (28)

where the ideal weights and activation functions are bounded
by ‖w1‖ ≤ w1m and ‖φ̃1‖ ≤ φ̃1m, respectively.

Take the second term and substitute (16) to derive

ΔJ2(k)≤γ2l
2
2ỹ

2(k)+γ2x̃
2
2(k)

+ γ2(w1mφ1m+f10+ε1m+d1m)2− γ2

3
x̃2

1(k). (29)

Take the third term in (25), substitute (17), and assume that the
input is bounded such that umax > |u(k)| to get

ΔJ3(k) ≤ γ3 (f20 + (g20 + g2max)umax + f2max + d2m)2

+ γ3l
2
3ỹ

2(k) − γ3

2
x̃2

2(k). (30)

Take the fourth and final term and substitute (18) to obtain

ΔJ4(k)≤γ4ζ
2
1 (k)+γ4l

2
1ỹ(k)+γ4(w1mφ̃1m+ε1m)− γ4

3
ỹ2(k).

(31)

Combine (28)–(31) and simplify the first difference to get the
first difference of the Lyapunov function as

ΔJ(k) ≤ − γ1

(
1 − α1

∥∥∥φ̂1(k)
∥∥∥2

)(
ŵ1(k)φ̂1(k) + l4ỹ(k)

)2

−
(γ3

2
− γ2

)
x̃2

2(k) − γ2

3
x̃2

1(k)

−
(γ4

3
− 2γ1l

2
4 − γ2l

2
2 − γ3l

2
3 − γ4l

2
1

)
ỹ2(k)

− (γ1 − γ4)ζ2
1 (k) + D2

M (32)
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where D2
M is defined as

D2
M = 2γ1(w1mφ̂1m)2 + γ2(w1mφ1m + f10 + ε1m + d1m)2

+ γ3 (f20 + (g20 + g2max)umax + f2max + d2m)2

+ γ4(w1mφ̃1m + ε1m). (33)

Select

γ3 > 2γ2 γ4 > 6γ1l
2
4 + 3γ2l

2
2 + 3γ3l

2
3 + 3γ4l

2
1 γ1 > γ4.

(34)

This implies that ΔJ(k) < 0 as long as (20)–(24) and the
following hold:

| x̃1(k)| >
DM√

γ2
3

(35)

or

| x̃2(k)| >
DM√
γ3
2 − γ2

(36)

or

| ỹ(k)| >
DM√

γ4
3 − 2γ1l24 − γ2l22 − γ3l23 − γ4l21

(37)

or

| ζ1(k)| >
DM√
γ1 − γ4

. (38)

According to a standard Lyapunov extension theorem [14],
this demonstrates that the estimation errors, the output error,
and the NN observer weight estimation errors are UUB. �

Remark 1: In the aforementioned theorem, the state and
output estimation errors and the NN weights of the observer
are shown to be bounded, provided that the input is bounded.
The separation principle needs to be asserted for controller de-
sign if the system under consideration is linear. Unfortunately,
the separation principle does not hold for nonlinear systems.
Therefore, in the next section, the boundedness of the closed-
loop system is demonstrated, where the observer and all the
controller signals, including the control input, are proven to be
bounded. Here, the assumption that the control input is bounded
is relaxed. Note that the boundedness of the control input in the
aforesaid theorem for proving the observer stability may not
be a so stringent assumption, since, for identification purposes
alone, inputs are considered to be bounded in order to show
the boundedness of the identification error [14]. In a sense, the
observer is like an identifier expecting the inputs to be bounded
in order to reconstruct the states. The need for the boundedness
of the control input for proving the stability of the observer is
the direct consequence of the observer structure, as mentioned
before. In any case, this assumption will be relaxed next.

Remark 2: Equations (20)–(24), along with (35)–(38), are
used to ensure that the bounds are positive. In other words,
to guarantee that a selection of γ1, . . . , γ4 satisfying (35)–(38)
exists, the observer gain selections can be obtained as

γ4 > 6γ1l
2
4 + 3γ2l

2
2 + 3γ3l

2
3 + 3γ4l

2
1 > 3γ4l

2
1 ⇒ |l1| <

1√
3
.

Similarly, using

{
γ4 > 6γ1l

2
4 + 3γ2l

2
2 + 3γ3l

2
3 + 3γ4l

2
1

γ1 > γ4

⇒ γ4 > 6γ1l
2
4 > 6γ4l

2
4 ⇒ |l4| <

1√
6
. (39)

Additionally, by choosing |l2| <
√

3/3 and |l3| <
√

3/3,
γ1, . . . , γ4 can be assured to be positive.

D. Strategic Utility Function for Critic NN Design

The purpose of the critic NN is to approximate the long-
term performance index (or strategic utility function) of the
nonlinear system through online weight adaptation. The critic
signal also tunes the two action NNs. The tuning will ultimately
minimize the strategic utility function and NN outputs (control
inputs) so that closed-loop stability is inferred.

The utility function p(k) ∈ � is given by

p(k) =
{

0, if (|ỹ(k)|) ≤ c
1, otherwise

(40)

where c ∈ � is a user-defined threshold. The utility function
p(k) represents the current performance index. In other words,
p(k) = 0 and p(k) = 1 refer to the good and unsatisfactory
tracking performances at the kth time step, respectively. The
threshold value “c” should be selected by keeping in mind the
speed of convergence and tracking-error bounds. An additional
remark is added after the theorem later in this section.

The long-term strategic utility function Q(k) ∈ � is
defined as

Q(k)=βNp(k+1) + βN−1p(k + 2) + · · · + βk+1p(N) + · · ·
(41)

where 0 < β < 1 is the discount factor, and N is the horizon
index. The term Q(k) is viewed here as the long-term system
performance measure for the controller, since it is the sum of all
future system performance indices. Minimization of the long-
term measure (41) is accomplished by minimizing (41) with
respect to the control input. This is done by selecting a quadratic
performance index consisting of the critic NN signal for tuning
the action NN weights via minimization of the quadratic in-
dex. After some manipulation, (41) can also be expressed as
Q(k) = minu(k){βQ(k − 1) − βN+1p(k)}, which is similar
to the standard Bellman equation.

We utilize the universal approximation property of NN to
estimate the critic NN output and rewrite Q̂(k) as

Q̂(k) = ŵT
2 (k)φ

(
vT
2 ẑ2(k)

)
= ŵT

2 (k)φ̂2(k) (42)

where Q̂(k) ∈ � is the critic signal, ŵ2(k) ∈ �n2 is the tunable
weight matrix, v2 ∈ �2×n2 represents the constant input weight
matrix selected initially at random [13], φ̂2(k) ∈ �n2 is the
activation function vector in the hidden layer, n2 is the number
of hidden-layer nodes, and ẑ2(k) = [x̂1(k), x̂2(k)]T ∈ R2 is
the NN input vector.
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We define the prediction error as

ec(k) = Q̂(k) − β
(
Q̂(k − 1) − βNp(k)

)
(43)

where the subscript “c” stands for the “critic,” since Q(k) is
unavailable at the kth time instant. Define a quadratic objective
function to minimize based on the prediction error

Ec(k) =
1
2
e2
c(k). (44)

The weight update rule for the critic NN is obtained using
gradient adaptation, which is given by

ŵ2(k + 1) = ŵ2(k) + Δŵ2(k) (45)

Δŵ2(k) = α2

[
−∂Ec(k)

∂ŵ2(k)

]
(46)

or

ŵ2(k + 1) = ŵ2(k) − α2φ̂2(k)

×
(
Q̂(k) + βN+1p(k) − βQ̂(k − 1)

)T

(47)

where α2 ∈ � is the NN adaptation gain. Next, the design of
the virtual and actual control input selection is introduced using
the backstepping methodology.

E. Virtual Controller Design

In this section, the design of the virtual control input is
discussed. Before we proceed, the following mild assumption is
needed. Then, the systems of nonlinear equations are rewritten.

Assumption 2: The unknown smooth function g2(·) is
bounded away from zero for all x1(k) and x2(k) within the
compact set S. In other words, 0 < g2min < |g2(·)| < g2max,
∀x1(k) and x2(k) ∈ S, where g2min ∈ �+ and g2max ∈ �+.
Without loss of generality, we will assume that g2(·) is positive
in this paper.

First, we simplify by rewriting the state equations with the
following:

Φ(·) = f1 (x1(k), x2(k)) + g1 (x1(k), x2(k)) x2(k) + x2(k).
(48)

The system of (3) and (4) can be rewritten as

x1(k + 1) = Φ(·) − x2(k) + d1(k) (49)

x2(k + 1) = f2(·) + g2(·)u(k) + d2(k). (50)

Our goal is to stabilize the system output y(k) around a
specified target point yd by controlling the input. The secondary
objective is to make x1(k) approach its target x1d(k). At the
same time, all signals in systems (3) and (4) must be UUB,
all the NN weights must be bounded, and a performance index
must be minimized.

Define the tracking error as

e1(k) = x1(k) − x1d(k) (51)

where x1d(k) is the desired trajectory. Using (49), (51) can be
expressed as

e1(k + 1) = x1(k + 1) − x1d(k + 1)

= (Φ(·) − x2(k) + d1(k)) − x1d(k + 1). (52)

By viewing the second state x2(k) as a virtual control input
(which is typical in backstepping design), a desired virtual
control signal can be designed as

x2d(k) = Φ(·) − x1d(k + 1) + l5ê1(k) (53)

where l5 is a gain constant. Since Φ(·) is an unknown function,
x2d(k) in (53) cannot be implemented in practice. We invoke
the NN universal approximation property to estimate this un-
known nonlinear function

Φ(·) = wT
3 φ

(
vT
3 z3(k)

)
+ ε (z3(k)) (54)

where z3(k) = [x1(k), x2(k)]T ∈ �2 is the input vector,
wT

3 ∈ �n2 and vT
3 ∈ �2×n3 are the ideal and constant input

weight matrices, respectively, φ(vT
3 z3(k)) ∈ �n3 is the activa-

tion function vector in the hidden layer, n3 is the number of
hidden-layer nodes, and ε(z3(k)) is the functional estimation
error. Similar to the case of observer and critic NN design, using
the results from [13], the hidden-layer weights v3’s are chosen
initially at random and are kept constant, and the number of
hidden-layer nodes is chosen to be sufficiently large in order
to make the approximation error ε(z3(k)) arbitrarily small so
that the bound ‖ε(z3(k))‖ ≤ ε3m holds for all z3(k) ∈ S in a
compact set where ε3m is the upper bound.

Rewriting (53) using (54), the virtual control signal can be
rewritten as

x2d(k)=wT
3 φ

(
vT
3 z3(k)

)
+ ε (z3(k)) − x1d(k + 1) + l5ê1(k).

(55)

Replacing the actual states with the estimated ones, (55)
becomes

x̂2d(k) = ŵT
3 (k)φ

(
vT
3 ẑ3(k)

)
− x1d(k + 1) + l5ê1(k)

= ŵT
3 (k)φ̂3(k) − x1d(k + 1) + l5ê1(k) (56)

where ẑ3(k) = [x̂1(k), x̂2(k)]T ∈ �2 is the NN input vector
using the estimated states, and ê1(k) = x̂1(k) − x1d(k). Define

e2(k) = x2(k) − x̂2d(k). (57)

Equation (52) can be rewritten using (57)

e1(k + 1) = (Φ(·) − x2(k) + d1(k)) − x1d(k + 1)

= Φ(·) − (e2(k) + x̂2d(k)) + d1(k) − x1d(k + 1)

= Φ(·) − x̂2d(k) − e2(k) − x1d(k + 1) + d1(k).

(58)
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Replace (56) into (58), and then, substitute (54) into the com-
bined equation (58)

e1(k + 1) = Φ(·) −
(
ŵT

3 (k)φ̂3(k) − x1d(k + 1) + l5ê1(k)
)

− e2(k) − x1d(k + 1) + d1(k)

=
(
wT

3 φ3(k) + ε3(k)
)
− ŵT

3 (k)φ̂3(k)

− l5ê1(k) − e2(k) + d1(k)

= wT
3

(
φ̂3(k) − φ̃3(k)

)
− ŵT

3 (k)φ̂3(k) + ε3(k)

− l5ê1(k) − e2(k) + d1(k)

= wT
3

(
φ̂3(k) − φ̃3(k)

)
− ŵT

3 (k)φ̂3(k) + ε3(k)

− l5ê1(k) − e2(k) + d1(k)

= −w̃T
3 φ̂3(k) − wT

3 φ̃3(k) + ε3(k)

− l5ê1(k) − e2(k) + d1(k)

= −ζ3(k) − wT
3 φ̃3(k) + ε3(k)

− l5ê1(k) − e2(k) + d1(k) (59)

where

ζ3(k) = w̃T
3 (k)φ̂3(k) = ŵT

3 (k)φ̂3(k) − wT
3 φ̂3(k) (60)

φ̃3(k) =φ (v3ẑ3(k)) − φ (v3z3(k)) . (61)

Let us define

ea1(k) = ŵT
3 (k)φ̂3(k) +

(
Q̂(k) − Qd(k)

)
(62)

where Q̂(k) is defined in (42), Qd(k) represents the desired
strategic utility, and the subscript “a1” represents the error
for the first action NN, i.e., ea1(k) ∈ �. The desired strategic
utility function Qd(k) is selected as “0” [4] to indicate perfect
tracking at all steps, whereas the first term in (60) is essen-
tially the action NN output or virtual control input. Thus, (62)
becomes

ea1(k) = ŵT
3 (k)φ̂3(k) + Q̂(k). (63)

The objective function to be minimized by the first action NN
is given by

Ea1(k) =
1
2
e2
a1(k). (64)

The weight update rule for the action NN is also a gradient-
based adaptation, which is defined as

ŵ3(k + 1) = ŵ3(k) + Δŵ3(k) (65)

where

Δŵ3(k) = α3

[
−∂Ea1(k)

∂ŵ3(k)

]
(66)

or, in other words

ŵ3(k + 1) = ŵ3(k) − α3φ̂3(k)
(
Q̂(k) + ŵT

3 (k)φ̂3(k)
)

(67)

with α3 ∈ � being the NN adaptation gain.

F. Actual Controller Design

Choose the following desired control input:

ud(k) =
1

g2(k)
(−f2(k) + x̂2d(k + 1) + l6e2(k)) . (68)

Note that ud(k) is noncausal, since it depends upon the fu-
ture value of x̂2d(k + 1). We solve this problem by using a
semirecurrent NN, since it can be a one-step predictor. The
term x̂2d(k + 1) depends on state x(k), virtual control input
x̂2d(k), desired trajectory x1d(k + 2), and system errors e1(k)
and e2(k). By taking the independent variables as the input to
an NN, x̂2d(k + 1) can be approximated during control input
selection. Consequently, in this paper, a feedforward NN with
a properly chosen weight tuning law rendering a semirecur-
rent or dynamic NN can be used to predict the future value.
Alternatively, the value can be obtained by employing a filter
[14]. The first layer of the second NN generates x̂2d(k + 1)
using the system errors, state estimates, and past value x̂2d(k)
as inputs. The output of the first layer is used by the second
layer to generate a suitable control input. The results in the
simulation section show that the overall controller performance
is satisfactory. On the other hand, one can use a single-layer
dynamic NN to generate the future value of x̂2d(k), which
can be utilized as an input to a third control NN to generate
a suitable control input. Here, these two single-layer NNs are
combined into a single multilayer NN.

If the NN input is assumed to be z4(k) = [x1(k), x2(k),
e1(k), e2(k), x̂2d(k), x1d(k + 2)]T ∈ �6, then ud(k) can be
approximated as

ud(k)=wT
4 φ

(
vT
4 z4(k)

)
+ ε (z4(k))=wT

4 φ4(k)+ ε4(k) (69)

where w4 ∈ �n4 and v4 ∈ �6×n4 denote the constant ideal out-
put and hidden-layer weight matrices, respectively, φ4(k)∈�n4

is the activation function vector, n4 is the number of hidden-
layer nodes, and ε(z4(k)) is the estimation error so that the
bound ‖ε(z4(k))‖ ≤ ε4m holds for all z4(k) ∈ S in a compact
set. Again, we hold the input weights constant and adapt the
output weights only. We also replace the actual states with
estimated ones to design the control input as

u(k) = ŵT
4 (k)φ

(
vT
4 ẑ4(k)

)
= ŵT

4 (k)φ̂4(k) (70)

where ẑ4(k) = [x̂1(k), x̂2(k), ê1(k), ê2(k), x̂2d(k), x1d(k +
2)]T ∈ �6 is the input vector. Rewrite (57) and substitute
(68)–(70) to get

e2(k + 1)

= x2(k + 1) − x̂2d(k + 1)

=
(
f2(·) + g2(·)ŵT

4 (k)φ̂4(k) + d2(k)
)
− x̂2d(k + 1)
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Fig. 1. Adaptive-critic NN-based controller schematic.

= f2(·) + g2(·)
(
w̃T

4 (k)φ̂4(k) + wT
4 φ4(k) + wT

4 φ̃4(k)
)

+ d2(k) − x̂2d(k + 1)

= f2(·) + g2(·)
(
wT

4 (k)φ4(k)
)

+ g2(·)
(
ζ4(k) + wT

4 φ̃4(k)
)

+ d2(k) − x̂2d(k + 1)

= f2(·) + g2(·) (ud(k) − ε4(k))

+ g2(·)
(
ζ4(k) + wT

4 φ̃4(k)
)

+ d2(k) − x̂2d(k + 1)

= l6e2(k) − g2(·)ε4(k) + g2(·)ζ4(k)

+ g2(·)wT
4 φ̃4(k) + d2(k) (71)

where

ζ4(k) = w̃T
4 (k)φ̂4(k) = ŵT

4 (k)φ̂4(k) − wT
4 (k)φ̂4(k) (72)

φ̃4(k) = φ̂4(k) − φ4(k). (73)

Equations (59) and (71) represent the closed-loop error dy-
namics. Next, we derive the weight update law for the second
action NN. Define

ea2(k) = ŵT
4 (k)φ̂4(k) + Q̂(k) (74)

where ea2(k) ∈ �, and the subscript “a2” stands for the second
action NN. The first term in (72) is the NN output or control
input to the nonlinear system. Here, the desired strategic utility
function Qd(k) is “0” to indicate perfect tracking at all steps.
Following a similar design, choose a quadratic objective func-
tion to minimize

Ea2(k) =
1
2
e2
a2(k). (75)

Define a gradient-based adaptation where the general form is
given by

ŵ4(k + 1) = ŵ4(k) + Δŵ4(k) (76)

with

Δŵ4(k) = α4

[
−∂Ea2(k)

∂ŵ4(k)

]
(77)

or

ŵ4(k+1)= ŵ4(k)−α4φ̂4(k)
(
ŵT

4 (k)φ̂4(k)+Q̂(k)
)

. (78)

The proposed controller structure is shown in Fig. 1. Next,
in the following theorem, it is demonstrated that the closed-
loop system is UUB under some mild assumption that will be
stated next.

Assumption 3 (Bounded Ideal Weights): Let w1, w2, w3, and
w4 be the unknown output-layer target weights for the observer,
critic, and two action NNs, and assume that they are bounded
above so that

‖w1‖ ≤ w1m ‖w2‖ ≤ w2m ‖w3‖ ≤ w3m ‖w4‖ ≤ w4m

(79)

where w1m ∈ R+, w2m ∈ R+, w3m ∈ R+, and w4m ∈ R+

represent the bounds on the unknown target weights, where the
Frobenius norm [14] is used.

Fact 1: The activation functions are bounded above by
known positive values so that

∥∥∥φ̃1(·)
∥∥∥ ≤ φ̃1m

∥∥∥φ̃2(·)
∥∥∥ ≤ φ̃2m

∥∥∥φ̃3(·)
∥∥∥ ≤ φ̃3m

∥∥∥φ̃4(·)
∥∥∥ ≤ φ̃4m (80)

where φ̂1m, φ̃1m ∈ R+, φ̂2m, φ̃2m ∈ R+, φ̂3m, φ̃3m ∈ R+,
and φ̂4m, φ̃4m ∈ R+ are the upper bounds.

Theorem 2 (Closed-Loop–Observer–Controller Stability):
Consider the system given by (3) and (4), and let the disturbance
bounds d1m and d2m be the known constants. Let the observer,
critic, virtual control, and control input NN weight tuning be
given by (19), (47), (67), and (78), respectively. Let the virtual
control and actual control inputs be given by (56) and (70), the
tracking errors e1(k) and e2(k) and weight estimates ŵ1(k),
ŵ2(k), ŵ3(k), and ŵ4(k) be UUB, with the bounds specifically
given by (B.17) (shown below), and the design parameters be
selected as

0 <α1 ‖φ1(k)‖2 < 1 (81)

0 <α2 ‖φ2(k)‖2 < 1 (82)

0 <α3 ‖φ3(k)‖2 < 1 (83)

0 <α4 ‖φ4(k)‖2 < 1 (84)
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|l1| <
1√
3

(85)

|l2| <

√
3

3
(86)

|l3| <

√
3

3
(87)

|l4| <
1√
6

(88)

|l5| <
1√
5

(89)

|l6| <

√
3

3
(90)

0 <β <

√
2

2
(91)

where α1, α2, α3, and α4 are the NN adaptation gains; l1, l2,
l3, l4, l5, and l6 are the gains; and β is employed to define the
strategic utility function.

Proof: See Appendix B. �
Remark 3: The proposed adaptive-critic NN controller

scheme can be implemented in real-time manner rather than
in an offline iterative manner which is normally observed in
most adaptive-critic NN methods [4]. Suitable utility functions
are selected for both the critic and action NNs so that their
weights are tuned by minimizing the quadratic performance
indices. The observer NN estimates the states, whereas the critic
NN, using the binary signal of the system tracking errors as
the long-term utility function, generates a signal that is used
to tune the two action NNs. The first action NN is utilized
here to generate the virtual control input, whereas and the
second one generates the actual control input. In addition, the
two NN weights are tuned by using the gradient-descent-based
rule while minimizing the control inputs and long-term utility
function. Normally, a single critic is used to tune an action NN
for all adaptive-critic controller schemes in the literature [14],
whereas in this paper, a single critic is employed to tune two
action NNs due to the class of nonlinear discrete-time systems
under consideration. If the nonlinear discrete-time system is an
affine one, then a single action NN is sufficient [17].

Remark 4: Generally, the separation principle used for linear
systems does not hold for nonlinear systems, and hence, it is
relaxed in this paper for the controller design in the afore-
mentioned theorem, since the Lyapunov function is a quadratic
function of the system and weight estimation errors of the
observer and controller NNs. Consequently, the need for the
boundedness of the control input for the previous theorem is
relaxed in this theorem.

Remark 5: It is important to note that, in this theorem,
persistency of excitation (PE) condition for the NN observer
and the NN controller and linearity in parameter assumption
are not needed, since the first difference does not require the PE
condition to prove the boundedness of the weights. Even though
the input to the hidden-layer weight matrix is not updated and
only the hidden to the output-layer weight matrix is tuned,

the NN method relaxes the linearity in the unknown parameter
assumption. Additionally, the certainty equivalence principle is
not used. Overall, the approach renders a well-defined control.

Remark 6: The NN weight tuning in (23), (45), (65), and
(76) results in a semirecurrent NN, even though a feedforward
NN architecture is utilized. Here, the NN outputs are not fed as
delayed inputs to the network, whereas the outputs of each layer
are fed as delayed inputs to the same layer. This semirecurrent
NN architecture renders a dynamic NN that is capable of
predicting the state one step ahead.

Remark 7: It is only possible to show the boundedness of
all the closed-loop signals by using an extension of Lyapunov
stability [14] due to the presence of approximation errors and
bounded disturbances, which is consistent with the literature.

Remark 8: In order to guarantee that a selection of
γ1, . . . , γ10 satisfying (B.16) (shown below) exists, the observer
and controller gains have to be selected as

γ10 > 6γ3l
2
4 + 3γ8l

2
2 + 3γ9l

2
3 + 3γ10l

2
1

⇒ γ10 > 3γ10l
2
1 ⇒ |l1| <

1√
3
.

Now, using

{
γ10 > 6γ3l

2
4 + 3γ8l

2
2 + 3γ9l

2
3 + 3γ10l

2
1

γ3 > γ10

⇒ γ10 > 6γ3l
2
4 > 6γ10l

2
4 ⇒ |l4| <

1√
6
.

Similarly, using γ1 > 5γ1l
2
5 ⇒ |l5| < (1/

√
5).

Also, γ2 > 3γ1 + 3γ2l
2
6 ⇒ γ2 > 3γ2l

2
6 ⇒ |l6| <

√
3/3.

Similar to Theorem 1, by selecting |l2| < (
√

3/3) and |l3| <
(
√

3/3), the bounds are guaranteed to be positive. Finally, the
selection of the observer gains from this theorem appears to be
consistent with that of Theorem 1.

Remark 9: Although the proposed scheme is shown for a
second-order nonstrict feedback nonlinear discrete-time sys-
tem, the proposed backstepping scheme can be extendable to
an nth-order system with modifications.

Remark 10: The need for an exact model of the nonlinear
discrete-time system in many existing reinforcement learning
or adaptive-critic approaches [5], [6] is relaxed in this pa-
per. The action NN will learn the unknown system dynamics
through the feedback signals from the closed-loop system.
The proposed actor–critic architecture will render a model-free
approach [5], [6].

Remark 11: There is no explicit offline training phase, and
the updating of the NNs is performed in an online manner. This
is in contrast with many reinforcement learning designs where
some a priori training is needed. Additionally, the proposed
methodology does not require the stop/reset strategy utilized by
certain adaptive-critic schemes [5], [6].

Remark 12: Equations (47)–(56) relate the selection of adap-
tation, observer, and controller gains, whereas (57) provides
how the discount factor can be chosen in order to ensure
stability and convergence. Such a relationship does not exist
in the existing adaptive-critic literature where the discount
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factor and adaptation gains are selected by a trial-and-error
procedure [4].

Remark 11: With the proposed approach, learning can be
performed simultaneously in both the critic and action NNs,
which is in contrast with some of the available schemes where
learning is first accomplished by the critic NN and then by the
action NN [4].

Remark 12: The selection of the user-defined threshold “c”
has implications in the stability of the closed-loop system,
since it affects the critic NN performance. This value of “c” is
normally selected to be small; otherwise, the performance
is considered unacceptable, and the strategic utility function
is then constructed. Unless this value of “c” is chosen to
be small, the action NN weights are not close to their near-
optimal weights. These affect the tracking error and NN weight
estimation error bounds. However, there is a tradeoff between
speed of convergence and value of “c.” A small value of “c”
takes longer to converge and vice versa. More effort is needed
to understand the effect of “c” on tracking and NN weight
estimation error bounds, which will be a part of future work.

Corollary 1: The proposed adaptive-critic NN controller
and the weight update rule with parameter selection based on
(81)–(91) cause the state x2(k) to approach the desired virtual
control input x2d(k).

Proof: Combining (55) and (56), the difference between
x̂2d(k) and x2d(k) is given by

x̂2d(k) − x2d(k) = w̃3(k)φ3(k) − ε (z3(k)) = ζ3(k) − ε3(k)
(92)

where w̃3(k) ∈ �n3 is the first action NN weight estimation
error, and ζ3(k) ∈ � is defined in (60). Since both ζ3(k) ∈ �
and ε3(k) are bounded, x̂2d(k) is bounded close to x2d(k).
In Theorem 1, we show that e2(k) is bounded, i.e., the state
x2(k) is bounded to the virtual control signal x̂2d(k). Thus,
the state x2(k) is bounded to the desired virtual control signal
x2d(k). �

III. RESULTS AND ANALYSIS

Lean operation of an SI engine allows low emissions and
improved fuel efficiency. However, lean operation destabilizes
the engine due to the cyclic dispersion in heat release that
causes misfires. The adaptive-critic NN controller is designed
to stabilize the SI engine operating at lean conditions. In our
previous works, an adaptive NN controller approach [18] was
used to control the engine operating lean, with fuel being the
control input. However, the control input changes by more than
2.5%, causing a shift in the equivalence ratio (ratio of total fuel
to air) or operating regime of the engine that is undesirable.
This calls for a new controller, such as the one proposed in this
paper.

A. Daw Engine Model

SI engine dynamics can be expressed, according to the Daw
model, as a class of nonlinear systems in nonstrict feedback

form [15]

x1(k + 1) =AF (k) + F (k)x1(k)

− R · F (k)CE(k)x2(k) + d1(k) (93)

x2(k + 1) = (1 − CE(k)) F (k)x2(k)

+ (MF (k) + u(k)) + d2(k) (94)

y(k) =x2(k)CE(k) (95)

ϕ(k) =R
x2(k)
x1(k)

(96)

CE(k) =
CEmax

1 + 100−(ϕ(k)−ϕm)/(ϕu−ϕl)
(97)

ϕm =
ϕu − ϕl

2
(98)

where x1(k) and x2(k) are the total masses of air and fuel
in each cylinder that is unknown, and AF (k) and MF (k)
represent the mass flow rates of new air and nominal fuel,
respectively. The term ϕ(k) is defined as the fuel-to-air ratio
or equivalence ratio, and the y1(k) variable is the heat release
at the kth instance. The term ϕm relates the upper ϕu and
lower ϕl values of certain system parameters, as given by
(98), and it is used to compute combustion efficiency (97).
The combustion efficiency CE(k) is a function of both states,
and it is within the range of 0 < CEmin < CE(k) < CEmax

that is typically unknown. Moreover, the unknown residual gas
fraction F (k) is bounded by 0 < Fmin < F (k) < Fmax. The
unknown residual gas fraction is defined as the ratio of total
fuel to air remaining in the engine cylinder after combustion
(the fuel and air that were not burned during combustion). The
term F (k) is a function of both x1(k) and x2(k). The sum of
the nominal fuel and the control input will be considered as
the total fuel input per cycle. Finally, R is the air-to-fuel ratio
constant at stoichiometric conditions.

The terms d1(k) and d2(k) are unknown disturbances yet
upper bounded by |d1(k)| < d1m and |d2(k)| < d2m, with
d1m and d2m being the positive scalars. The engine dynamics
(93)–(97) can be represented in the general form given by
(3)–(5), with the nonlinearities being defined in (99).

To implement the observer, replace the following from the
Daw model into the general form as

f1(·) =AF (k) + F (k)x1(k)

g1(·) = − R · F (k)CE(k)

f2(·) = (1 − CE(k)) F (k)x2(k) + MF (k)

g2(·) = 1 (99)

f10 =AF0 + F0x̂1(k)

g10 = − R · F0CE0

f10 = (1 − CE0) F0x̂2(k) + MF0

g10 = 1. (100)

Equations (93)–(97), which represent the engine operating lean,
are a nonlinear discrete-time system in nonstrict feedback form,
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since F (k) and CE(k) are a function of x1(k) and x2(k). To
implement the controller, replace (99) in place of f1(·) and
g1(·), and combine them similar to (48) to define

Φ(·) = AF (k) + F (k)x1(k)−R · F (k)CE(k)x2(k) + x2(k).
(101)

To calculate the nominal values for (3) and (4), we run the
engine at the desired equivalence ratio. That will give us the
nominal fuel, air, and equivalence ratio—MF0, AF0, and ϕ0.
From those, combustion efficiency CE0 is calculated.

B. Simulation Results

The controller is easily simulated in C in conjunction with
the Daw model. The learning rates for the observer (81), critic
(82), virtual control input (83), and control input (84) networks
are 0.01, 0.01, 0.01, and 0.01, respectively. The gains l1, l2,
l3, l4, l5, and l6 are selected as 0.05, 0.05, 0.04, 0.05, 0.2, and
0.1. The constant “c” is chosen as 0.001 for the simulation and
experimental work. The system constants CEmax, ϕl, and ϕu

are chosen as 1, 0.66, and 0.73 based on the physics of the
engine system. The critic constants β and N are 0.4 and 4 based
on the conditions from Theorem 1. All NNs use 20 neurons with
hyperbolic tangent sigmoid activation functions in the hidden
layer.

The maximum moles that a single cylinder can hold is set
as 0.021 to match the experimental engine constraint shown in
the next section. Using this constant along with the following
equations:

ϕ = R

(
MF

AF

)
(102)

tm =
MF

mwfuel
+

AF

mwair
(103)

where mwfuel and mwair are the molecular weights of fuel
and air, respectively, and tm is the maximum moles that each
cylinder is capable of holding, for each equivalence ratio set
point, ϕ, MF , and AF can be calculated.

The last two system variables, namely, disturbances and
stochastic effects, are modeled as follows. First, we assume that
a Gaussian distribution governs the two effects. We may inject
disturbances to the two states in (93) and (94) due to d1(k) and
d2(k), but a simpler method is to perturb the equivalence ratio
(96). This simplification is sufficient because the states are not
measurable; therefore, the disturbances are increasingly com-
plex and immeasurable. Stochastic effects alter the output, and
through the combustion efficiency equation (97) and, finally,
the output equation (95), this single perturbation effectively
models the last two system variables. The final model uses a
Gaussian distribution noise that is injected into (96) centered
around the target equivalence ratio and deviation of 1% of
the target equivalence ratio. The resulting simulation output
matches the output observed from the Ricardo engine. All
simulations ran for 5000 cycles uncontrolled first and then 5000
cycles controlled.

Fig. 2. Uncontrolled and controlled heat-release return maps at ϕ = 0.89.
Heat release at k + 1th instance is plotted against heat release at kth instance.

Fig. 3. Heat-release and control input at ϕ = 0.89. The controller turns on at
k = 4000. Note the almost instant learning convergence of the controller.

Fig. 2 shows two heat-release return maps, i.e., one con-
trolled and the other uncontrolled, for an equivalence ratio of
0.89. Each subfigure shows heat release for the next time step
versus the current time step. Points centered along the 45◦

line represent heat-release values that are equal to the next-
step heat release. Note the clustering of the points around the
mean heat release of 870 J. The square represents the target
heat release. The relatively high equivalence ratio exhibits little
dispersion, which is indicated by little or no stray points away
from the central cluster. The left uncontrolled plot is similar
to the right controlled plot, because the controller is quiescent
due to the simulated engine that is performing well. There
are no complete misfires, but the heat-release variation can be
clearly seen. Fig. 3 shows the time series of the heat release
and control input at the same equivalence ratio. The controller
activates after several thousand cycles, which is indicated by
the fluctuation of the control output. The controller converges
quickly and to a stable operation point. The presence of spikes
in the control output indicates a decline in heat release such as
a misfire, translating into additional fuel control to counteract.

Figs. 4 and 5 show another set point at 0.79. Similar features
appear compared with the previous equivalence ratio, except
with higher frequency and amplitude of dispersion. Improve-
ments shown reflect the assertion of the control action.

In order to quantify the performance of the controller, we
compare the coefficient of variation (COV), which is the nor-
malized standard deviation divided by the mean of the heat
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Fig. 4. Uncontrolled and controlled heat-release return maps at ϕ = 0.79.

Fig. 5. Heat release and control input at ϕ = 0.79.

TABLE I
COV AND FUEL DATA FOR EACH OF THE SIX SET POINTS

release. As the COV decreases, the standard deviation de-
creases, which indicates that the engine heat release is more
stable compared with that with a higher COV. The controller
performs better, and the return map should consequently ap-
proach the target value. Table I tabulates all of the data from
the simulation. The COV of each set point decreased drastically
(shown with a negative sign) as the controller operated. The per-
formance exceeded the improvement expected due to the slight
increase in the mean fuel input. Next, we show that the experi-
mental data support the simulation data.

C. Ricardo Engine

The experimental results are collected from a Ricardo Hydra
engine with a modern four-valve Ford Zetec head. It contains
a single cylinder running at 1000 rpm with shaft encoders to
signal each crank angle degree and start of cycle. There are 720◦

per engine cycle.

Fig. 6. Uncontrolled and controlled heat-release return maps at ϕ = 0.8. Heat
release at k + 1th instance is plotted against heat release at kth instance.

In the cylinder, a piezoelectric pressure transducer records
pressure every crank-angle degree. Combustion is considered
to take place between 345◦ and 490◦, for a total of 145 pressure
measurements. The cylinder pressure is integrated along with
volume during the 17.7-ms calculation window. All communi-
cations are completed at this time. The output of our controller
is the fuel input. The fuel is controlled by a TTL signal to a fuel
injector driver circuit.

All signals communicate through a custom interface board
using a microcontroller. The board interfaces with the PC
through a parallel port and with the engine hardware through
an analog signal.

D. Experimental Results

All constants given in the simulation section are used in the
experiment. The first operation for an engine run is to measure
the air flow and nominal fuel. The desired equivalence ratio is
given by (102), where MF is the nominal mass of fuel, AF is
the nominal mass of air, and R is the constant.

These values are loaded into the controller. Ambient pressure
is used to reference the in-cylinder pressure when the exhaust
valve is fully open, and it is subtracted from the combustion
pressure measurements. Uncontrolled and controlled data were
collected at equivalence ratios of 0.8, 0.78, 0.75, and 0.72. The
uncontrolled engine ran for approximately 5000 cycles, and
then, the controller is turned on for another 5000 cycles. Steady
state was ensured prior to data collection by measuring a stable
exhaust temperature.

Fig. 6 shows two heat-release return maps, namely, one
controlled and the other uncontrolled, for the equivalence ratio
of 0.8. The target heat release is at 850 J. Fig. 7 shows the
time series of the heat release and control input for the same
equivalence ratio. Small changes indicate a quiescent controller
due to the near-stoichiometric set point.

Now, denote the state and output tracking errors as

ê1(k) = x̂1(k) − x1d(k)

ê2(k) = x̂2(k) − x̂2d(k)

êy(k) = ŷ(k) − y(k) (104)
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Fig. 7. Heat release and control input at ϕ = 0.8. The controller turns on at
k = 5200. Note the almost instant learning convergence of the controller.

Fig. 8. State tracking errors.

where ê1(k), ê2(k), and êy(k) are the state-1, state-2, and
output tracking errors, respectively.

Fig. 8 shows the controller state tracking errors at an equiv-
alence ratio of 0.8. The range represents tracking error in
percentage over and under the desired state trajectories. State-1
tracking error is considerably better than state-2 tracking er-
ror. The second state tracks within 0.3%; therefore, both are
performing well. The spikes indicate unsuccessful tracking.
Consequently, the observer and controller converged together
to the desired and estimated states, generating a stable error
system.

Fig. 9 shows the output tracking error in the same form as
the state tracking error. An immediate observation shows an ex-
tremely high error rate. The observer performance is abysmal.
Nonetheless, this signal that is fed into the NN controller
allows for the critical performance factor, i.e., the state tracking
errors, to converge and stabilize. It is not critical for one signal
to track perfectly, but rather, it should be the system as a
whole. Moreover, Theorem 1 proved the boundedness of the
output estimation. In conjunction with the natural bound of
the engine output, the tracking error will always be bounded.
The extreme fluctuation of the observer output may be the key
to the responsiveness of the controller as a whole.

Fig. 10 shows the return map of heat release for an equiv-
alence ratio of 0.72. Note that as the equivalence ratio de-
creases, the return map spreads out, and dispersion increases.

Fig. 9. Output tracking error.

Fig. 10. Uncontrolled and controlled heat-release return maps at ϕ = 0.72.

Fig. 11. Heat release and control input at ϕ = 0.72.

Fig. 11 shows the corresponding heat release and time series
of the control input. Misfires increase in frequency, as shown
by the negative heat-release spikes due to heat transfer from
the cylinder to the environment without internal generation
of useful work by combustion. Fig. 12 shows the increasing
difficulty of the observer and controller to generate a low state
tracking error compared with the previous case. As the engine
operates in a leaner mode, the overall dispersion increases, thus
degrading observer performance. Although the performance
is reduced, the tracking error is well within the satisfactory
performance. Fig. 13 shows the output tracking error. At the
lower equivalence ratio, it is performing better than the previous
equivalence ratio. This may be due to the memory effect of past
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Fig. 12. State tracking error with the corresponding mean value.

Fig. 13. Output tracking error.

engine cycles contributing to the residuals in the current cycle.
At a near-stoichiometric ratio of fuel to air, little dispersion
occurs, resulting in similar cylinder chemistry content before
each power cycle. Stochastic effects dominate and destroy
predictability. The high observer learning rate decimates the
tracking ability. On the other hand, at lower equivalence ratios,
higher dispersion and misfires create patterns of predictable
residuals. The observer exploits the pattern recognition power
of NN to drastically improve its performance.

Fig. 14 shows a detailed view of 35 controlled cycles at an
equivalence ratio of 0.72. The controller generates decreasing
control during cycles when the heat release is steady, which
is indicated by cycles from 4947 to 4954 and from 4963 to
4769. However, during misfires or extreme dispersion in heat
release, the controller attempts to compensate for the drop in
heat release by pushing the control up, which is indicated by
cycles 4943, 4944, 4955, etc. Note the general increase in
control during sequential or near-sequential misfires, such as
between cycles 4955 and 4962. The controller compensates
after a one cycle delay in the positive direction and attempts
to recover the engine heat release toward the target point. It is
difficult to determine success on cycles with no misfire, because
no heat-release plots are available for the uncontrolled case
during the same cycles when the controller is operating for

Fig. 14. Detailed view of 35 controlled cycles at ϕ = 0.72.

TABLE II
COV AND FUEL DATA FOR EACH OF THE FOUR SET POINTS

comparison. Overall, the controller performs according to the
general expectation.

Table II shows the improved COV when the controller is in
operation compared with the uncontrolled engine and also the
corresponding change in nominal fuel. An improvement in the
COV may be artificial due to an increase in fuel input. However,
this is not the case for this controller. At all equivalence
ratios except 0.75, the increase in fuel input is well within the
tolerance of the equipment. On average, the COV decreased
significantly by 16% compared with the controlled case, while
the fuel change is minimal and less than 2.5%.

Due to reduced cyclic dispersion, fewer misfires, and low-
energy cycles, a gain of approximately 8% in the indicated
fuel conversion efficiency was observed for controlled-engine
operation, which is significant.

IV. CONCLUSION

The presented controller successfully controlled an SI engine
to reduce cyclic dispersion under lean operation. The system
is modeled under a nonstrict feedback nonlinear discrete-time
system. It converged upon a near-optimal solution through the
use of a long-term strategic utility function, even though the
exact dynamics are not known beforehand. It was experimen-
tally shown that the COV was reduced when the controller
was turned on. At the same time, the average fuel input did
not change significantly; therefore, the improvements are solely
due to the effects of the controller. The output is stable, as
predicted by the Lyapunov proof.

We also provided the emission data for several set points
in Appendix A. It is important to note that the emission-data
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TABLE III
EMISSION DATA FOR SELECT EQUIVALENCE RATIOS

TABLE IV
uHC EMISSION DATA

uncertainty may be 5% or more. Therefore, the presented data
are used for indicating general trends, not as absolute improve-
ment. However, lean operation, in general, is proven to decrease
emissions compared with stoichiometric operation, regardless
of the inaccuracies of emission-data collection presented. There
was a significant reduction in both NOx and unburned hydro-
carbons (uHCs) between controlled and uncontrolled situations.
However, the most significant drop is between lean and sto-
ichiometric equivalence ratios. This is due to the controller’s
ability to successfully decrease dispersion.

APPENDIX A

Tables III and IV show the improvement in emissions for
several equivalence ratios. The improvement is better than what
we have seen before [16] using another controller that does not
optimize any performance index. NOx is reduced by around
30%–40% from the uncontrolled scenario. However, CO2 re-
mains unchanged, whereas O2 decreased by about 4%–10%,
with uHCs decreasing with control by 8% due to reduced cyclic
dispersion.

APPENDIX B

Proof of Theorem 2: Define the Lyapunov function

J(k) =
10∑

i=1

Ji(k)

=
γ1

5
e2
1(k) +

γ2

3
e2
2(k) +

6∑
j=3

γj

αj−2
w̃T

j (k)w̃j(k)

+ γ7ζ
2
2 (k − 1) +

γ8

3
x̃2

1(k) +
γ9

3
x̃2

2(k) +
γ10

3
ỹ2

(B.1)

where 0 < γi, i ∈ {1, . . . , 6}, are the auxiliary constants; the
NN weight estimation errors w̃T

1 (k + 1), w̃T
2 (k + 1), w̃T

3 (k +
1), and w̃T

4 (k + 1) are defined in (19), (47), (67), and (78), by
subtracting their respective ideal weights wi, i ∈ {1, 2, 3, 4}, on
both sides, respectively; the observation errors x̃1(k + 1) and
x̃2(k + 1), are defined in (16) and (17), respectively; the system
errors e1(k + 1) and e2(k + 1) are defined in (59) and (71),
respectively; and αi, i ∈ {1, 2, 3, 4}, are the NN adaptation

gains. The Lyapunov function (B.1) obviates the need for the
separation principle. Take the first term and the first difference
using (59) to get

J1(k) =
γ1

5
e2
1(k)

5
γ1

ΔJ1(k) = e2
1(k + 1) − e2

1(k)

=
(
−ζ3(k) − wT

3 φ̃3(k) + ε3(k)

− l5ê1(k) − e2(k) + d1(k)
)2

− e2
1(k)

=
(
−ζ3(k) − wT

3 φ̃3(k) + ε3(k)

− l5 (x̃1(k) + e1(k)) − e2(k) + d1(k)
)2

− e2
1(k). (B.2)

Invoke the Cauchy–Schwarz inequality defined as

(a1b1 + · · · + anbn)2 ≤
(
a2
1 + · · · + a2

n

) (
b2
1 + · · · + b2

n

)
(B.3)

and simplify (B.2) to get

1
γ1

ΔJ1(k) ≤
(

ζ2
3 (k) + l25x̃

2
1(k) + l25e

2
1(k) + e2

2(k)

+
(
ε3(k) − w3φ̃3(k) + d1(k)

)2
)
− 1

5
e2
1(k)

ΔJ1(k) ≤ γ1ζ
2
3 (k) + γ1l

2
5x̃

2
1(k) + γ1l

2
5e

2
1(k) + γ1e

2
2(k)

+ γ1

(
ε3(k) − w3φ̃3(k) + d1(k)

)2

− γ1

5
e2
1(k)

≤ γ1l
2
5x̃

2
1(k) + γ1l

2
5e

2
1(k) + γ1e

2
2(k) + γ1ζ

2
3 (k)

+ γ1(ε3m + w3mφ̃3m + d1m)2 − γ1

5
e2
1(k)c.

(B.4)

Take the second term, substitute (71), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ2(k) ≤ 3l26e
2
2(k)+3g2

2maxζ
2
4 (k)

+ γ2(d2m+g2maxε4m+g2maxw4mφ̃4m)2−e2
2(k).

(B.5)
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Take the third term, substitute (19), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ3(k) ≤ −γ3

(
1 − α1

∥∥∥φ̂1(k)
∥∥∥2

)(
ŵ1(k)φ̂1(k) + l4ỹ(k)

)2

+ 2γ3(w1mφ̂1m)2 + 2γ3l
2
4ỹ

2(k) − γ3ζ
2
1 (k). (B.6)

Take the fourth term, substitute (47), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ4(k) ≤ −γ4

(
1 − α2

∥∥∥φ̂2(k)
∥∥∥2

)

×
(
Q̂(k) + βN+1p(k) − βQ̂(k − 1)

)2

− γ4ζ
2
2 (k) + 2γ4β

2ζ2
2 (k − 1)

+ 2γ4

(
w2mφ̂2m(1 + β) + βN+1

)2

. (B.7)

Take the fifth term (B.1), substitute (67), invoke the
Cauchy–Schwarz inequality, and simplify

ΔJ5(k)≤−γ5

(
1−α3

∥∥∥φ̂3(k)
∥∥∥2

)(
Q̂(k)+ŵT

3 (k)φ̂3(k)
)2

+ 2γ5ζ
2
2 (k)+2γ5(w2mφ̂2m+w3mφ̂3m)2−γ5ζ

2
3 (k).

(B.8)

Take the sixth term, substitute (78), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ6(k)=−γ6

(
1−α4

∥∥∥φ̂4(k)
∥∥∥2

)(
ŵT

4 (k)φ̂4(k)+Q̂(k)
)2

+ 2γ6(w4mφ̂m + w2mφ̂2m)2+2γ6ζ
2
2 (k)−γ6ζ

2
4 (k).

(B.9)

Take the seventh term, set γ7 = 2γ4β
2, and simplify

ΔJ7(k) = 2γ4β
2ζ2

2 (k) − 2γ4β
2ζ2

2 (k − 1). (B.10)

Take the eighth term, substitute (16), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ8(k) ≤ γ8l
2
2ỹ

2(k) + γ8x̃
2
2(k)

+ γ8(w3mφ3m + f10 + ε3m + d1m)2 − γ8

3
x̃2

1(k).

(B.11)

Take the ninth term, substitute (17), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ9(k)≤γ9

(
f20 + (g20 + g2max)w4mφ̂4m + f2max + d2m

)2

+ γ9(g20 + g2max)ζ4(k) + γ9l
2
3ỹ

2(k) − γ9

3
x̃2

2(k).

(B.12)

Take the tenth term, substitute (18), invoke the Cauchy–
Schwarz inequality, and simplify

ΔJ10(k) ≤ γ10ζ
2
1 (k) + γ10l

2
1ỹ(k)

+ γ10(w1mφ̃1m + ε1m) − γ10

3
ỹ2(k). (B.13)

Combine (B.4)–(B.13) to get the first difference of the
Lyapunov function

ΔJ ≤ −
(γ1

5
− γ1l

2
5

)
e2
1(k) −

(γ2

3
− γ1 − γ2l

2
6

)
e2
2(k)

− (γ3 − γ10)ζ2
1 (k) −

(γ9

3
− γ8

)
x̃2

2(k)

− (γ5 − γ1)ζ2
3 (k)

−
(
γ6 − γ2g

2
2max − γ9(g20 + g2max)

)
ζ2
4 (k)

−
(γ8

3
− γ1l

2
5

)
x̃2

1(k)

−
(
γ4 − 2γ5 − 2γ6 − 2γ4β

2
)
ζ2
2 (k)

−
(γ10

3
− 2γ3l

2
4 − γ8l

2
2 − γ9l

2
3 − γ10l

2
1

)
ỹ2(k) + D2

m

− γ3

(
1 − α1

∥∥∥φ̂1(k)
∥∥∥2

)(
ŵ1(k)φ̂1(k) + l4ỹ(k)

)2

− γ4

(
1 − α2

∥∥∥φ̂2(k)
∥∥∥2

)

×
(
Q̂(k) + βN+1p(k) − βQ̂(k − 1)

)2

− γ5

(
1 − α3

∥∥∥φ̂3(k)
∥∥∥2

)(
Q̂(k) + ŵT

3 (k)φ̂3(k)
)2

− γ6

(
1 − α4

∥∥∥φ̂4(k)
∥∥∥2

)(
ŵT

4 (k)φ̂4(k) + Q̂(k)
)2

(B.14)

where

D2
m = γ1(ε3m + w3mφ̃3m + d1m)2

+ γ2(d2m + g2maxε4m + g2maxw4mφ̃4m)2

+ 2γ3(w1mφ̂1m)3 + 2γ4

(
w2mφ̂2m(1 + β) + βN+1

)2

+ 2γ5(w2mφ̂2m + w3mφ̂3m)2

+ 2γ6(w4mφ̂m + w2mφ̂2m)2

+ γ8(w3mφ3m + f10 + ε3m + d1m)2

+ γ9

(
f20 + (g20 + g2max)w4mφ̂4m + f2max + d2m

)2

+ γ10(w1mφ̃1m + ε1m)2. (B.15)

Select

γ1 > 5γ1l
2
5 γ2 > 3γ1 + 3γ2l

2
6

γ3 > γ10 γ4 > 2γ5 + 2γ6 + 2γ4β
2

γ5 > γ1 γ6 > γ2g
2
2max + γ9(g20 + g2max)

γ7 = 2γ4β
2 γ8 > 3γ1l

2
5

γ9 > 3γ8 γ10 > 6γ3l
2
4 + 3γ8l

2
2 + 3γ9l

2
3 + 3γ10l

2
1. (B.16)
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This implies that ΔJ(k) < 0 as long as (81)–(91) and the
following hold:

|e1(k)| >
Dm√

γ1
5 − γ1l25

or

|e2(k)| >
Dm√

γ2
3 − γ1 − γ2l26

or

|ζ1(k)| >
Dm√

γ3 − γ10

or

|ζ2(k)| >
Dm√

γ4 − 2γ5 − 2γ6 − 2γ4β2

or

|ζ3(k)| >
Dm√

γ5 − γ1

or

|ζ4(k)| >
Dm√

γ6 − γ2g2
2max − γ9(g20 + g2max)

or

|x̃1(k)| >
Dm√

γ8
3 − γ1l25

or

|x̃2(k)| >
Dm√
γ9
3 − γ8

or

|ỹ(k)| >
Dm√

γ10
3 − 2γ3l24 − γ8l22 − γ9l23 − γ10l21

. (B.17)

According to a standard Lyapunov extension theorem [10],
[14], this demonstrates that the state estimation errors, the out-
put error, and the NN observer and controller weight estimation
errors are UUB. �
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