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Abstract—This article reviews the recent development of adap-
tive dynamic programming (ADP) with applications in control.
First, its applications in optimal regulation are introduced, and
some skilled and efficient algorithms are presented. Next, the use
of ADP to solve game problems, mainly nonzero-sum game prob-
lems, is elaborated. It is followed by applications in large-scale
systems. Note that although the functions presented in this arti-
cle are based on continuous-time systems, various applications
of ADP in discrete-time systems are also analyzed. Moreover, in
each section, not only some existing techniques are discussed, but
also possible directions for future work are pointed out. Finally,
some overall prospects for the future are given, followed by con-
clusions of this article. Through a comprehensive and complete
investigation of its applications in many existing fields, this arti-
cle fully demonstrates that the ADP intelligent control method
is promising in today’s artificial intelligence era. Furthermore,
it also plays a significant role in promoting economic and social
development.

Index Terms—Adaptive critic designs (ACDs), adaptive
dynamic programming, approximate dynamic programming,
intelligent control, learning control, neural dynamic program-
ming, neuro-dynamic programming, optimal control, reinforce-
ment learning (RL).

I. INTRODUCTION

ARTIFICIAL intelligence and machine learning have
attracted widespread interests in recent years. Especially

in the past ten years, the research on machine learning
has developed rapidly, making it one of the most impor-
tant cutting-edge research fields in artificial intelligence.
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For decades, there have been multiple classification meth-
ods for machine learning according to the emphasis on
different aspects. Generally speaking, machine learning is
divided into reinforcement learning (RL), supervised learn-
ing, and unsupervised learning. In particular, RL is a learning
technique based on statistics and dynamic programming. It
uses the reward/punishment signal feedback from the envi-
ronment/system as input, and learns in a “trial-and-error”
manner. In the field of control, RL can effectively solve the
“curse of dimensionality” problem in dynamic programming,
so it is also called adaptive/approximate dynamic program-
ming (ADP). ADP is an intelligent control method that has
aroused extensive interest in academia and industry since it
was proposed. In order to help this intelligent control tech-
nique be well understood, the origin of ADP, its structures,
and the development of learning algorithms are described,
respectively.

A. Origin of the Name of ADP

The acronym “ADP” stands for either “adaptive dynamic
programming” or “approximate dynamic programming.” The
term adaptive dynamic programming was probably men-
tioned for the first time in 1975 in The Quarterly Journal of
Economics by a paper studying optimal solutions for consum-
ing depletable natural resources [1]. Subsequently, adaptive
dynamic programming was formally studied in 1977 for inven-
tory control [2], [3]. Another work in 1976 also mentioned it
for fault detection [4]. For almost 20 years since, the study of
adaptive dynamic programming continued but rarely for con-
trol applications. Until 1995 in a paper by Barto et al. [5], they
introduced the so-called “adaptive real-time dynamic program-
ming,” which was closely related to the topic reviewed in this
article. Furthermore, in 2002, Murray et al. [6] developed an
adaptive dynamic programming algorithm for optimal control
of continuous-time affine nonlinear systems, with the complete
proof of its main theorem given later in [7].

Dynamic programming has been considered as a useful
tool for inventory control problems and researchers have real-
ized in very early days the difficulty of solving dynamic
programming problems to obtain exact solutions. Thus,
approximate solutions were sought using adaptive dynamic
programming [2], [3] or using approximate dynamic program-
ming formulation [8]. In terms of control applications, the term
approximate dynamic programming for optimal control was
presented by Werbos in 1987 [9].
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Back in 1977, Werbos introduced an approach [10] which
was later named adaptive critic designs (ACDs) [11]–[15].
Werbos [11] classified ACD into three classes, namely, heuris-
tic dynamic programming (HDP), dual heuristic programming
(DHP), and globalized DHP (GDHP). By the time when
he published the 1992 book chapter [13], Werbos has used
the three terms “ACD,” “approximate dynamic program-
ming,” and “RL” interchangeably. The main research results
in RL can be found in the book by Sutton and Barto [16]
and the references cited therein. Even though both RL and
ADP/ACD provide approximate solutions to dynamic pro-
gramming, research in these two directions has been somewhat
independent [17] in the past. The most famous algorithms
in RL are the temporal difference algorithm [18] and the
Q-learning algorithm [19], [20]. Compared to ADP/ACD, the
area of RL is more mature and has a vast amount of literature
(see [16], [21]–[23]).

Another related popular term is under the acronym “NDP”
which stands for “neuro-dynamic programming” [24], [25] or
“neural dynamic programming” [26]–[28]. NDP has been used
interchangeably with ADP by researchers to describe approx-
imate approaches for dynamic programming problems in con-
trol applications [24]–[32]. The very first book in NDP/ADP
was published in 1996 by Bertsekas and Tsitsiklis [25]
which systematically and fully explained the methodol-
ogy for optimal control, intelligent control, and operations
research.

When considering approximate solutions to optimal control
problems, suboptimal control has also been used in the litera-
ture for this purpose. Under this term, we can also find some
papers studying optimal control problems by approximating
dynamic programming solutions, e.g., [33]–[37].

In this article, we will use ADP to represent “adap-
tive dynamic programming,” “approximate dynamic program-
ming,” “neuro-dynamic programming,” “neural dynamic pro-
gramming,” “ACDs,” as well as “RL” [38]–[41].

B. Development of the Structures of ADP

Neural networks (NNs) have been a popular choice of
function approximation structures for the implementation of
ADP algorithms, even though many other structures can also
be used, such as lookup table [42] and fuzzy logic [43].
The present review will consider NNs as a tool for the
implementation of ADP algorithms. Among the three classes,
HDP, using a critic NN to approximate the value function
of a dynamic system, is a structure with less computa-
tional burden, and is the most studied by scholars. The
critic network in DHP approximates the derivatives of the
value function with respect to the state variables [14], [15],
[44], [45]. The critic network in GDHP combines HDP and
DHP [14], [15], [46]. It approximates the value function
and the derivatives of the value function, and is a structure
with the largest amount of computation. But its approxi-
mation accuracy is high. Adding the control policy to the
inputs of the critic network obtains the corresponding action-
dependent (AD) forms. In addition, ADHDP is also called
Q-learning [11], [13], [47]–[50].

In recent years, He et al. [51]–[56] proposed a goal-
representation online ADP method, which added a refer-
ence network to the traditional critic–actor network. Later,
Zhong et al. [53] provided a theoretical analysis of this
method. Ni et al. [54] also compared this method with ADHDP
and SARSA learning to explain the performance of this new
method. This new ADP structure has been applied to prob-
lems, such as maze navigation [54], vehicle pole balance
design [55], inverted pendulum balance control [51], and
industrial large-scale complex process control [53]. Direct
HDP was presented in [57] and the convergence guarantee
was provided for this design in [58]. The kernel-ADP struc-
ture in [59], which combined the learning and generalization
abilities of sparse kernel machines with the approximation
abilities of NNs, was proposed and applied to the con-
trol of ball–plate and inverted pendulum. It was shown that
kernel-HDP and kernel-DHP have better performance than
HDP and DHP in both empirical and theoretical aspects. The
ADP method based on NN requires manual selection of a
group of activation functions. However, these activation func-
tions have no clear physical meaning in actual equipments
and there is no unified and intuitive selection method. The
quality and suitability of the selected activation functions
cannot be known. On the other hand, fuzzy approximators
can use the prior knowledge of the equipment to approxi-
mate the unknown variables easily and reasonably. Therefore,
the controller design method based on the fuzzy hyperbolic
model was integrated with adaptive control, and then fuzzy
ADP was proposed by Tang et al. [43]. Aiming at the large
amount of computation in the traditional NN approximation
method, a global ADP method was proposed in [60]. This
method can make the system achieve global asymptotic sta-
bility, which is different from the previous ADP-based control
methods.

C. Development of ADP Learning Algorithms

As an important subject of machine learning, iterative algo-
rithms have incomparable advantages in the optimal control
of complex systems [61]–[69]. The iterative methods in ADP
consist of two components: 1) the policy evaluation compo-
nent using the critic network and 2) the policy improvement
component using the actor network. According to the differ-
ent implementation methods of the two components, scholars
put forward different ADP learning algorithms, in which value
iteration (VI) and policy iteration (PI) are the basis of these
algorithms. The implementation methods of these two meth-
ods are described in detail in [62]–[69]. It is worth mentioning
that the success of PI depends on the initial admissible control
policy, which makes the system stable in the learning pro-
cess, and thus has been used by many researchers [70]–[75].
Although VI is not restricted by this condition, the stability of
the system cannot be guaranteed in general. Because of this,
it is not recommended to carry out the iterative VI algorithm
online, which limits its applications in industry [76]–[83].
Wei et al. [78] proved that the iterative VI can converge to the
optimal value by choosing some positive semidefinite function
as the initial value function and the stability of the system can
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also be guaranteed. It is a meaningful work to prove that the
value function iteration starting from an arbitrary value also
guarantees stability.

The convergence proof of VI can be found in [76], [84],
and [85]. In [79], VI was used to solve optimal tracking con-
trol problems of discrete-time systems. Later, in [83], it is
proved that if iteration starts with an initial stable control pol-
icy, then any control policy generated by VI will also stabilize
the system. Compared with the traditional VI, local VI reduces
the computational burden, and its value function and control
law can be updated in a subset of the state space rather than
the entire state space [80]. Its admissibility, termination, and
convergence were analyzed in [81] and [82], respectively.

Murray et al. [6] explained that the PI algorithm for
continuous-time systems can obtain the optimal solution of the
Hamilton–Jacobi–Bellman (HJB) equation theoretically. Later,
Liu and Wei [72] first described the stability and convergence
of the algorithm in discrete-time systems and provided a spe-
cific method to obtain the initial admissible control. However,
the NN approximation error was not considered in [72]. Then,
it was shown in [86] and [87] that the iterative value func-
tion eventually converges to the neighborhood of the optimal
solution in the presence of NN approximation errors. The inte-
gral RL (IRL) algorithm [88], [89] adopts an integral Bellman
equation on the basis of traditional PI, which makes pol-
icy evaluation relax the requirement of system dynamics. An
improved learning algorithm using policy gradient in policy
improvement was adopted in [90] and [91].

Some improved algorithms have been derived from
the integration of VI and PI, such as generalized PI
algorithm [92], [93], generalized VI [94]–[96], and multi-
step policy evaluation [97], [98]. VI and PI were used
as special cases of generalized PI algorithms. Therefore,
most ADP methods can be considered as generalized PI
algorithms [92], [93]. The development of generalized PI
algorithms for continuous-time systems can be found in [99].
The results of [94] and [96] show that the generalized
VI algorithm can start from any positive semidefinite func-
tion. Using the multistep scheme for policy evaluation,
Luo et al. [97], [98] developed a multistep HDP algorithm to
realize the tradeoff between PI and VI. In [100], an adaptive
RL method was developed. It relaxes the requirement for ini-
tial admissible control and speeds up the convergence of the
VI by integrating VI and PI with a balancing parameter.

D. Structure and Symbols of This Article

It is noted that most of the existing ADP literature is biased
toward discrete-time systems [62], [63], [69], [101], [102].
As an alternative, in this article, continuous-time systems are
taken as examples to illustrate the development of ADP in
control problems in recent years, and a brief analysis is made
for discrete-time systems. Depending on the type of problems
addressed, the remainder of this article is arranged as follows.
The basic optimal regulation problems are given in Section II,
including optimal state regulation in Section II-A, optimal out-
put regulation in Section II-B, and optimal tracking control in
Section II-C. The game theory is introduced in Section III,

TABLE I
NOMENCLATURE

mainly aimed at nonzero-sum games. Later, ADP methods for
large-scale systems are described in Section IV. The future
perspectives and the conclusions of this article are presented
in Sections V and VI, respectively. The nomenclature of this
article is described in Table I.

II. ADP FOR OPTIMAL REGULATION PROBLEMS

Optimal regulation problems include optimal state regula-
tion, optimal output regulation, and optimal tracking control.
Optimal output regulation and optimal tracking control are
more in line with actual engineering needs, and they can
be converted into optimal state regulation. In fact, the zero
trajectory tracking problem is the regulation problem.

A. ADP for Optimal State Regulation

The optimal state regulator is to keep the state near the
equilibrium and to maximize the value function of the system.
It is needed for, e.g., temperature control and pressure control
in industrial processes. When the state of the dynamic system
deviates from the equilibrium state, it is particularly important
to design an effective controller to stabilize the system. An
equilibrium state can be transformed into the zero state, so
the zero state is usually regarded as the system equilibrium
state for convenience.

Nonlinear dynamic systems can generally be divided into
affine and nonaffine systems, which are described by

ẋ(t) = f (x(t)) + g(x(t))u(t), x(0) = x0 (1)

ẋ(t) = F(x(t), u(t)), x(0) = x0 (2)

respectively, where x ∈ R
n is the state, u ∈ R

m is the control,
and x0 is the initial state. Generally, it is assumed that the
nonlinear dynamic system is controllable.
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The general state regulator problem can be divided into
the finite-time state regulator and infinite-time state regula-
tor. The value function V of the finite-time state regulator can
be written as

V(x(t)) =
∫ tf

t
L(x(ν), u(ν))dν

=
∫ tf

t
(L1(x(ν)) + L2(u(ν)))dν (3)

where L(x, u) = L1(x)+L2(u), and tf > 0 is the given terminal
time. V considers the behavior of the system from the initial
state to the equilibrium point, and is a compromise between
terminal error, control energy, and state deviation. When tf
in (3) approaches infinity, i.e.,

V(x(t)) =
∫ ∞

t
L(x(ν), u(ν))dν

=
∫ ∞

t
(L1(x(ν)) + L2(u(ν)))dν (4)

the value function of the infinite-time state regulator is
obtained. The optimal control problem of (1/2) can simply
be stated as to determine u(t) in order to minimize V(x0).

Problem 1: For affine/nonaffine systems (1/2) and
finite/infinite-time value functions (3/4), the problem of
optimal state regulation is to design a learning control
structure, and then gradually explores the optimal control
function which minimizes the value function and stabilizes
the closed-loop systems (1/2).

The Hamiltonian of the systems (1/2) is designed as

H(x, u,∇V) = L(x, u) + (∇V)Tẋ. (5)

Based on (5), the HJB equation is presented as

min
u

H
(
x, u,∇V∗) = 0 (6)

where V∗ is the optimal value of V . Then, the optimal control
function can be obtained by

u∗ = arg min
u

H
(
x, u,∇V∗). (7)

For affine system (1), when the control energy function L2(u)

is quadratic, i.e., L2(u) = uTRu, (7) can further be written as

u∗ = −1

2
R−1gT(x)∇V∗. (8)

The following definition is needed for the PI algorithm.
Definition 1 (Admissible Control) [76]: A control u(t) is

admissible with respect to the value function on a compact set
� ∈ R

n if u(t) is continuous on �, u(0) = 0, u(t) stabilizes
the systems on �, and ∀x0 ∈ �, V(x0) is finite.

1) PI Algorithm: The PI algorithm for the continuous-time
system is shown in Algorithm 1, which is adapted from [69].

Algorithm 1 is an iterative ADP algorithm for optimal
control of the continuous-time system (1) with the value
function (4) based on PI. It is adapted from algorithms for
discrete-time systems in [69], where various iterative ADP
algorithms are listed, including VI, PI, and generalized PI.

Algorithm 1 PI for (1) and (4) With L2(u) = uTRu
Step 1 Initialization:

i = 0.
Select an initial admissible control policy u0.

Step 2 Evaluation:
i = i + 1.
The value function Vi under the control ui−1 is
obtained according to

L(x, ui−1) + (∇V)iT
(

f (x) + g(x)ui−1
)

= 0. (9)

Step 3 Improvement:
The updated control policy ui is obtained according to

ui = argmin
u

H(x, u,∇Vi). (10)

More specifically,

ui = −1

2
R−1gT(x)∇Vi. (11)

Step 4 Judgment:
If preset conditions for convergence are not met, go
back to Step 2.

Step 5 Stop:
Obtain the optimal control policy u∗ = ui and the
optimal value function V∗ = Vi.

2) Improved Online Technique: The admissible control
required for initialization is often difficult to obtain. This
has prompted scholars to propose improved learning rules.
The following general assumption supports the reinforcement
of the learning process by adding an additional stabilizing
term [103]–[106].

Assumption 1: Take a continuously differentiable Lyapunov
function VR(x) composed of polynomials for system (1).
Assume that VR(x) satisfies

V̇R(x) = (∇VR(x))Tẋ = (∇VR(x))T(f + gu∗) < 0. (12)

Suppose there is a positive-definite matrix S(x) such that
(∇VR(x))T(f + gu∗) = −(∇VR(x))TS(x)∇VR(x) holds.

Design an additional stabilizing term added to the weight
updating rules

�(x, u) =
{

0, if (∇VR(x))T(f (x) + g(x)u) < 0
1, otherwise.

(13)

Remark 1: The design of (13) is based on the use of the
Lyapunov function to judge whether the system is stable or
not. That is to say, in the learning process of optimal control,
when the dynamic system is found to be unstable, the learning
process is induced to follow the negative gradient direction
of the derivative of the Lyapunov function. Therefore, this
improved online technique can relax the condition of initial
admissible control [103], [104].

3) Integral Reinforcement Learning: Traditional policy
evaluation requires the knowledge of system dynamics. In the
case of unknown internal dynamics, many algorithms can-
not be used directly. To deal with this problem, IRL was
developed [88], [89], [107], [108].
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For time t and time interval T , it can be found that (4) is
equivalent to [108]

V(x(t − T)) =
∫ t

t−T
L(x(ν), u(ν))dν

+
∫ ∞

t
L(x(ν), u(ν))dν

=
∫ t

t−T
L(x(ν), u(ν))dν + V(x(t)). (14)

Equation (14) is used in the policy evaluation process
of IRL.

Remark 2: Because of the physical characteristics of actu-
ators in engineering, it is necessary to explain the situation
of input constraints [108]–[116]. The measurement of control
energy adopts the general nonquadratic form as

L2(u) = 2
∫ u

0
ηmartanh

(
ν

ηm

)T

dν

= 2
m∑

j=1

∫ uj

0
ηmartanh

(
νj

ηm

)
dνj

= 2ηmuTartanh

(
u

ηm

)
+ η2

m

m∑
j=1

ln

(
1 − u2

j

η2
m

)
(15)

where |u| < ηm, ηm is a positive constant, and artanh(·) is the
inverse of the hyperbolic tangent function tanh(·). Note that
other monotonically bounded functions can also be used to
deal with constrained control problems.

Remark 3: It is possible that faults occur during the exe-
cution of the actuator [117]–[122]. The general form of the
actuator failure is expressed as

uf (t) = ρf (t)u(t) + δf (t) (16)

where 0 < ρf (t) ≤ 1 and δf (t) represent the efficiency
coefficient and bias fault, respectively. When ρf (t) = 1 and
δf (t) = 0, there is no fault in the actuator.

4) Off-Policy IRL: Off-policy learning is often employed
when the accurate system model is unknown. Compared with
on-policy learning, it uses system data generated by arbi-
trary control to solve the HJB equation [123]–[131]. If the
system (1) is written as

ẋ(t) = f (x(t)) + g(x(t))ui−1 + g(x(t))
(

u(t) − ui−1
)
. (17)

Then, based on (9) and (11), we have

(∇V)iT
(

f (x(t)) + g(x(t))ui−1
)

= −L
(

x(t), ui−1
)

(18)

(∇V)iTg = −2uiTR (19)

respectively. The derivative of the value function with respect
to (17) is

V̇i(x(t)) = (∇V)iT
(

f (x(t)) + g(x(t))ui−1

+ g(x(t))
(

u(t) − ui−1
))

= −L
(

x(t), ui−1
)

− 2uiTR
(

u(t) − ui−1
)
. (20)

By integrating both sides of (20) on the interval [t − T, t], the
following equation is used in the off-policy IRL scheme:

Vi(x(t − T)) =
∫ t

t−T

(
L
(

x(t), ui−1
)

+ 2uiTR
(

u(t) − ui−1
))

dν

+ Vi(x(t)). (21)

It is found that the mathematical system model is not explicitly
included in (21), but is actually implicit in the data measure-
ment. In addition, the value function is evaluated using system
data generated with arbitrary control policies, which increases
the “exploration” ability of the learning process [89], [132].

5) Experience Replay/Concurrent Learning: The persis-
tence of excitation (PE) condition can ensure convergence to
the optimal solution, so it is necessary in the learning process.
In general, traditional PE conditions are difficult or impossi-
ble to implement online. Moreover, in the learning process,
the PE condition makes the algorithm require a large number
of samples [133]–[136].

Definition 2 (PE Condition) [137]: At any given time t, the
signal ρ1(t) is persistently excited if it satisfies

q1I ≤
∫ t

t−T
ρ1(ν)ρT

1 (ν)dν ≤ q2I (22)

where T , q1, and q2 are positive constants, and I is an identity
matrix with appropriate dimensions.

By using current and past data repeatedly, experience
replay/concurrent learning technique provides simplified con-
ditions for real-time monitoring of PE. In [133], concurrent
learning was used to describe the idea of adaptive control for
uncertain systems. It is shown that the stability of the model
reference adaptive controller can be achieved by using both
current data and abundant recorded data. However, the opti-
mality of the closed-loop system was not explained. Although
experience replay was mentioned in [134], it did not prove
convergence and stability. In [108], the experience replay
technique was applied to the IRL algorithm.

6) Function Approximation Based on NN: NNs have been
used for function approximation in the implementation of ADP
algorithms.

Assumption 2: The continuous function ρ2(x) can be
expressed by an NN [138]

ρ2(x) = WT
0 φ0(x) + ε0(x) (23)

where W0, φ0(·), and ε0(x) are the weight, the activation
function, and the reconstruction error of the NN.

According to Assumption 2, the optimal value function and
the optimal control are expressed as

V∗(x) = WT
1 φ1(x) + ε1(x) (24)

u∗(x) = WT
2 φ1(x) + ε2(x) (25)
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respectively. Employing a critic NN and an actor NN to
approximate the optimal value function and the optimal con-
trol, we have

V̂(x) = ŴT
1 φ1(x) (26)

û(x) = ŴT
2 φ1(x). (27)

The weight estimation errors of the critic NN and the actor
NN are given as

W̃1 = W1 − Ŵ1 (28)

W̃2 = W1 − Ŵ2 (29)

respectively.
Remark 4: According to the relationship between the

optimal value function and the optimal control derived from
the HJB equation, the actor network can be omitted for
affine nonlinear systems and only a single-critic network is
used [15], [59], [65], [139]. This structure is called the sin-
gle network adaptive critic (SNAC) and was first developed
in [140]. In this case, (25) becomes

u∗(x) = −1

2
R−1

(
∂F(x, u, t)

∂u

)T(
∇φT

1 (x)W1 + ∇εT
1 (x)

)

and (27) becomes

û(x) = −1

2
R−1

(
∂F(x, u, t)

∂u

)T

∇φT
1 (x)Ŵ1.

A single network can simplify the analysis and reduce the
amount of calculation. However, when the complete knowl-
edge of the system is unknown, the actor network needs to be
considered.

The residual error eH is defined as

eH = L
(
x, û
)+ ∇V̂(x)

(
f + gû(x)

)
(30)

where ∇V̂(x) = ŴT
1 ∇φ1(x). The objective function to be

minimized is

EH =
∫ t

0
e2
H(τ )dτ. (31)

A critic NN update rule based on least squares is given
by [141]

˙̂W1 = −β1
θ

1 + ηcθTθ
eH (32)

where β1 > 0 is the learning rate, θ = φ1(x)(f + gû), and
 = (

∫ t
0 θ(ν)θT(ν)dν)−1. An actor NN learning algorithm

based on gradient is given by [141]

˙̂W2 = − β2√
1 + θTθ

∂eH
∂Ŵ2

eH −
β3

(
Ŵ2 − Ŵ1

)

2
(33)

where β2 and β3 are positive constants,
√

1 + θTθ is intro-
duced for normalization purpose, and the second term on the
right-hand side of (33) is designed to facilitate stability analy-
sis [141]. The PE condition is needed to ensure that the signal
is uniformly ultimately bounded (UUB).

Definition 3 (UUB) [108], [142]: The signal ρ3(t) is UUB
on a compact set P , if for all ρ3(t0) ∈ P , there exist a positive

bound Db and a number TD(Db, ρ3(t0)) such that ‖ρ3(t)‖ ≤
Db for all t > t0 + TD.

For unknown system dynamics, a data-driven approach was
described in [143]. Reconstructing an unknown system using
the following form of network:

ẋ = Ax + WT
3 φ3(z) + ϕ3(x) (34)

where z = VT
3 [xT, uT]T, and A is a constant matrix designed

to stabilize the system. The corresponding identifier is chosen
as

˙̂x = Ax̂ + ŴT
3 φ3

(
ẑ
)

(35)

where ẑ = VT
3 [x̂T, uT]T. Then, we have

˙̂W3 = β4φ3
(
ẑ
)̃
xT (36)

where β4 is the learning rate. It can be proved that after
sufficient learning, the identification error x̃ is asymptotically
stable. The system input matrix g(x) is obtained by taking the
partial derivative of (35) with respect to the control function
u, i.e.,

g(x) = ŴT
3

∂φ3
(
ẑ
)

∂ ẑ

∂ ẑ

∂u
. (37)

7) NN Learning Based on the Event-Triggering Mechanism:
In the traditional network control system, the control inputs
u are transmitted at a fixed sampling interval. However, in
the event-triggering mechanism, they are only sampled and
transmitted at the event-triggering instants {τl}∞l=0. Therefore,
the control input sequence is expressed as {u(x(τl))}∞l=0. This
transmission mechanism reduces communication traffic and
computational load without compromising the stability of
the system [144]–[154]. An event is generated by an event-
triggering threshold being violated, i.e., el(x) > T (x), where
el(x) and T (x) are the error and the given or designed
threshold of the current state, respectively. Specifically

el(x) =
{

0, t = τl

x(τl) − x(t), t ∈ (τl, τl+1)
(38)

T (x) =
(
1 − α2

e

)
L1(x) + L2

(
û(x(τl))

)
D2

t
(39)

where 0 ≤ αe ≤ 1 and Dt > 0 are constants. Therefore,
the control input based on the event-triggering mechanism is
expressed as u(el(x) + x(t)). Then, (2) and (8) become

ẋ(t) = f (x(t)) + g(x(t))u(el(x) + x(t)) (40)

u∗ = −1

2
R−1gT(el(x) + x(t))∇V∗(el(x) + x(t)) (41)

respectively.
Assumption 3: The control input and the closed-loop

system satisfy Lipschitz continuity, i.e.,∥∥u∗(x(t)) − u∗(x(τl))
∥∥ ≤ Du‖el(x)‖ (42)

‖f (x) + g(x)u(el(x) + x(t))‖ ≤ Dx(‖x‖ + ‖el(x)‖) (43)

where Du and Dx are positive constants.
Under the premise that the control input satisfies Lipschitz

continuity and L2(u) = uTu, the Hamiltonian based on
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the event-triggered control input satisfies the following
relationship [145]:∥∥H

(
x, u∗(x(τl)),∇V∗)∥∥ = ∥∥u∗(x(t)) − u∗(x(τl))

∥∥2

≤ D2
u‖el(x)‖2 (44)

where Du > 0 is a constant. Since the control policy is
only updated at the triggering time instant, the event-triggered
closed-loop system is presented as an impulsive dynamic
system, and the construction method of this hybrid system was
given in [143], [145], and [154]. According to (28) and (30),
we have

eH = −W̃T
1 θ + WT

1 θ + L
(
x, û
)

= −W̃T
1 θ + eW (45)

where eW = WT
1 θ + L(x, û). The augmented state is defined

as � = [xT, xT(τl), W̃T
1 ]T, so the impulsive dynamic system

is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�̇ =
⎡
⎣

f + gû(x(τl))

0
−βc

θ

1+ηcθTθ

(
W̃T

1 θ − eW
)
⎤
⎦, t ∈ [τl, τl+1)

�(t) = �
(
t−
)+

⎡
⎣ 0

el(x)
0

⎤
⎦, t = τl+1

(46)

where βc > 0 is a constant and �(t−) = limς→0 �(t − ς).
The event interval is defined as

δl = τl+1 − τl. (47)

It is proved in [106] that there is a nonzero positive lower
bound for the event intervals, i.e.,

δl ≥ 1

2Dx
ln

(
2

∥∥∥∥T (x)

x(τl)

∥∥∥∥+ 1

)
> 0. (48)

This avoids the accumulation of events, i.e., it excludes the
Zeno phenomenon.

B. ADP for Optimal Output Regulation

In practical engineering control problems, the state mea-
surement is sometimes unrealistic, so the output regulation
problem in linear systems [127], [155]–[157] or nonlinear
systems [158], [159] is widely concerned. It can be seen
that the minimum value function is actually determined by
the state vector. When the controlled system is completely
observable, the output regulation problem of the system can
be transformed into an equivalent state regulation problem.

Problem 2: The optimal output regulation is to design
control input such that the output approaches zero when
minimizing the value function.

1) Optimal Output Regulation for Linear Systems: In [155],
by discretizing the unknown dynamic linear system, an optimal
output-feedback control policy was proposed, which strictly
shows that the detection noise in the online learning process
does not affect the accuracy of the solution of the discrete
Riccati equation. In the case of unknown system dynamics and
disturbances, the predefined performance indices were mini-
mized by combining output regulation and ADP in [156] to

Algorithm 2 LQR Based on IRL for System (49) and (50)
(See [162])
Step 1 Initialization:

i = 0,
Si = 0,
Select an initial stabilizing gain Ki.

Step 2 Evaluation:
i = i + 1,
Pi is obtained according to

xT(t)Pix(t) =
∫ t+T

t
xT(ν)(Q + (Ki−1)TRKi−1)

× x(ν)dν + xT(t + T)Pix(t + T). (51)

Step 3 Improvement:
The updated control policy is obtained according to

Ki = R−1(BTPi + Si−1)CT(CCT)−1, (52)

Si = RKiC − BTPi. (53)

Step 4 Judgment:
If preset conditions for convergence are not met, go to
Step 2.

Step 5 Stop:
Obtain the optimal control policy u∗ = −Kiy and the
optimal value function V∗ = xTPix.

achieve tracking control and disturbance rejection. Under the
relaxation of some assumptions, the conclusion was further
generalized in [160]. Then, the application to grid-connected
inverter system with input delay [161] shows that this method
was effective to solve adaptive optimal output regulation
problems.

Take a linear continuous-time system as an example [162]

ẋ = Ax + Bu (49)

y = Cx (50)

where A, B, and C are time-invariant matrices with appropriate
dimensions, and y is the output vector of the system. For time
interval T > 0 and any time t, an online learning algorithm
for a suboptimal output-feedback controller based on the IRL
technique is presented in Algorithm 2.

In [127], the method was applied to both linear quadratic
regulator (LQR) and linear quadratic tracking (LQT) by using
a discounted value function as

V =
∫ ∞

t
e−βd(ν−t)

(
yTQy + uTRu

)
dν (54)

where βd is a positive constant. Then, it was proved that the
system state can be constructed by observing the output of a
limited historical time. Using the Bellman equation, a model-
free off-policy RL controller was designed in the case of
the unknown system state and system dynamics. This output-
feedback method is equivalent to the state-feedback control
and is more robust than the static output-feedback method.
Note that the ADP-based control method for the adaptive
optimal output regulation of model-free linear systems under
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Fig. 1. Structure diagram of an observer–critic learning algorithm [159].

input saturation and the event-triggering mechanism needs to
be studied in the future.

2) Optimal Output Regulation for Nonlinear Systems:
Liu et al. proposed an optimal output regulation scheme for
unknown nonlinear systems based on the observer in [158].
The critic network and the three-layer NN observer were used
to obtain the optimal control law, which ensures the stability
of the closed-loop system. The learning of the actor, critic,
and observer in the control scheme is continuous, real time,
and simultaneous. Yang et al. [159] relaxed PE conditions and
the initial admissible control. This is the first time to design
an optimal output control method based on the observer–
critic structure without considering these two conditions for
partially unknown affine nonlinear continuous-time systems.
The learning process of this typical algorithm is shown in
Fig. 1.

Future work will need to focus on online algorithms for
optimal output control of nonaffine nonlinear continuous-time
systems.

C. ADP for Optimal Tracking Control

For practical systems, such as unmanned aerial vehicles
(UAVs) and spacecrafts, it is necessary to design controllers to
track desired trajectories in an optimal manner. Therefore, the
optimal tracking problem has attracted more and more atten-
tion in the control field [163], [164]. It is found that in recent
years, the related work usually involves the use of augmented
systems. By constructing the augmented system with tracking
error and desired trajectory, the solution of the optimal track-
ing control problem is transformed into an optimal regulation
problem [165].

Problem 3: The optimal tracking control problem is to
design a control policy to make the actual output of the system
track the desired trajectory and minimize the preset value
function.

Consider the general value function corresponding to (1)

V(x(t)) =
∫ ∞

t
e−βh(ν−t)L(x(ν), u(ν))dν (55)

where L(x, u) = L1(x) + L2(u) and βh > 0 represents the
discount factor. The desired reference trajectory dynamics is
defined as

ẋh(t) = R(xh(t)) (56)

where R(xh(t)) satisfies the Lipschitz continuity and R(0) = 0.
The tracking error is

eh(t) = x(t) − xh(t). (57)

According to (1) and (56), we have

ėh(t) = f (x(t)) + g(x(t))u(t) − R(xh(t)). (58)

The augmented system state is defined as ζ(t) =
[eT

h (t), xT
h (t)]T, and then the augmented system dynamics are

further obtained as

ζ̇ (t) = F(ζ (t)) + G(ζ (t))u(ζ (t)) (59)

where

F(ζ (t)) =
[

f (xh(t) + eh(t)) − R(xh(t))
R(xh(t))

]

G(ζ (t)) =
[

g(xh(t) + eh(t))
0

]
.

The value function associated with (59) is

V(ζ (t)) =
∫ ∞

t
e−βh(ν−t)L(ζ (ν), u(ν))dν (60)

where L(ζ, u) = L1(ζ ) + L2(u). The Hamiltonian is given by

H(ζ, u) = L(ζ, u) − βhV(ζ ) + ∇VT(ζ )(F(ζ ) + G(ζ )u(t)).

(61)

The HJB equation of the tracking control problem is derived
based on the Bellman principle of optimality

L
(
ζ, u∗)− βhV∗(ζ ) + ∇V∗T(ζ )

(
F(ζ ) + G(ζ )u∗(t)

) = 0.

(62)

According to the stationarity condition, the relationship
between the optimal control and the optimal value func-
tion can be obtained. For the quadratic energy function, i.e.,
L2(u) = uTRu, we have

u∗ = −1

2
R−1GT(ζ )∇V∗T(ζ ). (63)

In [113], the standard form solution of the tracking control
problem was first given. The disadvantage of this solution is
that the feedforward and feedback parts of the control input
are solved separately. By minimizing a new discounted value
function of the augmented system, the two parts of the control
input are obtained simultaneously.

Remark 5: In the optimal tracking control problem, it is
shown that the discount factor βh in the value function is
needed. Since the control input includes feedforward control
and feedback control, the feedforward control input may make
the value function V unbounded when the reference trajectory
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Fig. 2. Structure diagram of a tracking control learning algorithm in [166].

xh(t) does not converge to zero. The employment of the dis-
count factor βh ensures that the value function V is bounded,
thereby effectively avoiding this problem [113].

The structure of tracking control based on a single
network [166] is shown in Fig. 2. It is practically impossi-
ble to track the helicopter trajectory by using state feedback.
In this view, in [103], an output-feedback controller for heli-
copter UAV trajectory tracking was presented by constructing
an NN-based observer. For the optimal tracking control based
on the event-triggered mechanism, the triggering threshold of
the augmented system given in [147] is

Th(x) =
(
1 − α2

h

)
L1(eh) + L2(u)

D2
h

(64)

where αh ∈ [0, 1] is a constant. The algorithm design of
inverse optimization for tracking control of nonlinear nonaffine
systems needs to be further studied as mentioned in [167].

Remark 6: A plenty of excellent works on optimal regula-
tion for discrete-time systems have been presented.

1) The design of state regulator is the basis of other
regulators [76], [78], [82], [168]–[174]. For example,
in [78], [81], and [82], Wei et al. described the specific
ADP algorithm of VI and local VI, respectively. In [171],
the developed generalized PI algorithm can start from
any positive semidefinite function, and policy evalua-
tion and policy improvement are carried out with their
own independent iteration indicators.

2) Literature, such as [161] and [175]–[178], have
developed the discrete output regulator. Luo et al.
developed multistep Q-learning to solve the optimal out-
put control problem of model-free discrete-time aircraft
in [176]. Its implementation does not require the knowl-
edge of dynamic systems and is a data-based learning
control method. Moreover, it is proved that the sequence
of iterative Q functions converges to the optimal Q func-
tion. Although this multistep Q-learning method was
developed in the context of helicopters, it can also be
applied to other similar systems. However, when the
system involves state saturation, input delay, or random
disturbances, the convergence of the algorithm needs
further study.

3) The tracking control problem of discrete-time systems
was introduced in [98], [130], and [179]–[190]. For lin-
ear tracking control problems, PI and VI were studied
in detail in [179]. Wang et al. first used an iterative
ADP algorithm to design the finite-time optimal track-
ing controller for a class of discrete nonlinear systems
in [180]. Input constraints and time delays were con-
sidered in [181] and [182], respectively. In [98], the
convergence theory of the multistep policy evaluation
method in the tracking control problem was presented.
The event-triggering mechanism was applied to the
suboptimal tracking control of discrete-time nonlinear
systems [183]. The actor–critic off-policy algorithm was
applied to solve the optimal tracking control under sud-
den changes [130]. It is a promising work to extend
this method to the tracking control problem of nonlinear
systems.

Up to this point, the introduction of ADP techniques in
solving basic optimal control problems is given. It should be
emphasized that the problems that ADP can solve are not
limited to these.

III. ADP FOR GAME THEORY

The game theory, which is widely used in many subjects,
such as mathematics and economics, is a decision-making
theory in a conflicting environment. According to the agree-
ment among the players, it can be divided into noncooperative
and cooperative games, namely, zero-sum and nonzero-sum
games [191], [192]. The Nash equilibrium solution of the
noncooperative games opens up a new and effective way
to solve H∞ control problems (see [193]–[197]). Similarly,
nonzero-sum differential games can also be solved using the
ADP technique. To be specific, when there are multiple con-
trollers in a single nonlinear system, each controller tries to
minimize its own value function in the sense of Nash equi-
librium. For such problems, it is needed to solve coupled
algebraic Riccati equations (AREs) for linear systems or cou-
pled Hamilton–Jacobi (HJ) equations for nonlinear dynamic
systems. Similar to HJB and HJI equations, the nonlinear
characteristics of coupled HJ equations makes it impossi-
ble to obtain analytic solutions directly. It is found that
most of the literature on nonzero-sum games focused on
continuous-time systems. Therefore, the next step is to briefly
describe nonzero-sum game problems of continuous-time
systems and analyze the ADP technique for solving coupled
HJ equations.

Problem 4: The nonzero-sum game problem intends to
design a set of admissible control policies u∗ = {u∗

j }Nj=0 to
minimize the corresponding value function of each player.

In general, consider the following nonzero-sum games with
N players:

ẋ = f (x) +
N∑
j=1

gj(x)uj, x(0) = x0. (65)

The set of control policies of N players is represented by
u, i.e., u � {uj}Nj=0. For the kth player, define its value
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function as

Vk =
∫ ∞

t
Lk(x(ν), u(ν))dν

=
∫ ∞

t
(Lk1(x(ν)) + Lk2(u(ν)))dν (66)

where Lk2(u) = ∑N
j=1 Lk2j(uj) = ∑N

j=1 uT
j Rkjuj and Rkj is a

positive-definite symmetric matrix. Supposing that (66) is con-
tinuously differentiable, the Hamiltonian associated with the
kth player is defined as

Hk(x, u, Vk) = Lk1(x) + Lk2(u)

+ ∇VT
k

⎛
⎝f (x) +

N∑
j=1

gj(x)uj

⎞
⎠. (67)

The optimal value function V∗
k satisfies

min
uk

Hk
(
x, u, V∗

k

) = 0. (68)

Since the Hamiltonian has zero partial derivatives with respect
to the optimal control policy, we have

u∗
k = −1

2
R−1

kk gT
k (x)∇V∗

k . (69)

Substituting Vk and uj into the Hamiltonian (67) with V∗
k and

u∗
j , respectively, and let it equal to zero, it becomes the coupled

HJ equation.
Most of the traditional solutions assume that the system

dynamics is known. For example, an offline PI algorithm
using the actor–critic structure was proposed in [198]. In
order to reduce the computational complexity of using two
networks, in [199], Liu et al. developed an online syn-
chronous PI learning algorithm based on one critic network
only. Inspired by [108], an online concurrent learning algo-
rithm was proposed in [200], which was then extended to
constrained nonzero-sum game problems in [114]. However,
the algorithm in [114] was established based on the known
dynamic model. Zhao et al. extended the application scope
of [114] by using the NN identifier in [135]. Similar to [199],
this scheme used one critic network only to approximate each
player’s value function and optimal control policy. The inte-
gral Q-learning algorithm, the off-policy Q-learning algorithm
and the data-driven Q-learning algorithm for linear systems
have been developed in [201]–[203], respectively. Song et al.
extended the above work in [89] and developed the off-
policy IRL technique. Although the work in [89] is concerned
with nonlinear systems, all players have the same control
input matrix gj(x), which restricts its applications. Note that
the above work belongs to the scope of optimal regulation.
The nonzero-sum game of optimal tracking control was first
explored in [204]. Although it does not require the knowledge
of dynamic models and is a data-based Q-learning scheme, it
contains no convincing theoretical analysis.

According to the previous investigation, uncertainties have
not attracted much attention in nonzero-sum games. However,
it is nevertheless widespread in practical engineering. How
to find the Nash equilibrium such that each player still min-
imizes the value function in the uncertain environment will

be a meaningful work. As far as we know, two robust con-
trol methods were designed for two kinds of uncertainties
based on the optimal control policy in [205]. Specifically,
consider a single dynamic system with multiple players with
uncertainties as

ẋ = f (x) +
N∑
j=1

gj(x)
(
uj + dj

)
(70)

where dj denotes the uncertainties of the jth player. It is divided
into two categories

dj = dj(x),
∥∥dj(x)

∥∥ ≤ βd1j‖x‖ (71)

where βd1j is a positive constant corresponding to the jth
player, and

dj = −βd2j, β̇d2j = 0 (72)

where βd2j is an unknown constant, respectively. In [205], the
data-based RL method was used to obtain the optimal control
policies of (65). Then, based on the optimal control policies,
a suitable modification is made to obtain the robust controller.
The data-driven offline learning method in [205] analyzes the
matched problem, rather than the general unmatched problem.
It is worth mentioning that the nonzero-sum game is very sim-
ilar to human beings’ daily life. How to apply the proposed
algorithm to the nonzero-sum game in life, and then bring
benefits to human beings’ lives is meaningful.

In addition, in multiplayer nonzero-sum games, explor-
ing efficient and low-cost algorithms should be paid more
attention. Some literature attempted to simplify the network
structure by using algorithms based on a single network.
In order to further reduce the number of executions of
control policies, the event-triggered mechanism was intro-
duced into multiplayer nonzero-sum games. On one hand,
the evolution of the dynamic system is affected by multiple
players simultaneously. On the other hand, we need to
maintain the performance of multiple players. These two
reasons made it difficult to introduce the event-triggering
mechanism. As far as we know, Sahoo et al. [206] and
Mu and Wang [207] have studied this problem inde-
pendently and the proposed triggering mechanisms are
different. In [206], the control policy error ej(x(τl)) is
expressed as

ej(x(τl)) = uj(x(τl)) − uj. (73)

The system based on the event-triggered control policy is
written as

ẋ = f (x) +
N∑
j=1

gj(x)
(
ej(x(τl)) + uj

)
. (74)

Define a new value function

Vk =
∫ ∞

t
Lk(x(ν), u(ν))dν

=
∫ ∞

t
(Lk1(x(ν)) + Lk2(u(ν)) − Lk3(ē(ν)))dν (75)

where ē is the threshold. For (75), the control policy and the
threshold are considered as two players in zero-sum games,
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respectively, in which the control policy is to minimize the
value function and the triggering threshold is to maximize
the value function. Then, an event-triggered control policy
for the multiplayer nonzero-sum game based on the idea
of mini-max was proposed. Although the authors elaborated
that the developed scheme can avoid the Zeno phenomenon,
they did not provide a theoretical analysis. How to relax the
dependence on the control input matrix in the implementation
process remains to be further studied. Consider the following
two-player nonzero-sum game problems [207]:

ẋ = f (x) + g1(x)u1 + g2(x)u2. (76)

Excessive triggering period results in the decrease of the
approximation performance of the NN. Therefore, the authors
proposed a novel event-triggering mechanism with an alarm
sampling period mode. This mechanism has two triggering
conditions { ‖el(x)‖2 ≤ T (x)

max{τl+1 − τl} = Tmax
(77)

where el(x) is defined in (38), T (x) is the designed thresh-
old, and Tmax is the given alarm sampling period. When the
error violates the threshold or the sampling period exceeds
the alarm, the actions of the two players will be updated
at the same time. The deduction of the minimum trigger-
ing interval effectively proves that the Zeno phenomenon will
not occur. However, its applicability to multiplayer games is
unknown. It is important to extend the proposed algorithms to
general systems with constraints or unknown dynamics.

IV. ADP FOR LARGE-SCALE SYSTEMS

Large-scale systems, such as power systems, transportation
systems, and ecosystems, contain cross-linking terms among
their subsystems. The existence of these cross-linking com-
ponents increases the difficulty of the traditional centralized
control design. In recent years, decentralized control meth-
ods have received much attention. The local controllers of the
subsystems are designed using the local state information and
further construct a decentralized controller [208]. In [209],
appropriate performance indices were predefined for isolated
subsystems, and it was proved that decentralized control poli-
cies can be obtained from the optimal policies of these
subsystems.

Problem 5: For decentralized control problems of nonlinear
systems composed of N subsystems with interconnections, the
goal is to develop a set of control policies {ui}N

i=1 to stabilize
the system.

Consider the nonlinear continuous-time system composed
of N subsystems

ẋi = fi(xi) + gi(xi)ui(xi) + Īi(x), i = 1, 2, . . . , N (78)

where x = [xT
1 , . . . , xT

N]T is the state of the whole system
composed of all interconnected subsystems, and Īi(x) denotes
the interconnected component of the subsystem. If Īi(x) can
be decomposed into

Īi(x) = gi(xi)Ii(x) (79)

then, it is called a matched interconnection term. The isolated
subsystem of system (78) is given as

ẋi = fi(xi) + gi(xi)ūi(xi), i = 1, 2, . . . , N. (80)

The value function is given as

Vi =
∫ ∞

t
Li(xi(ν), ūi(ν))dν

=
∫ ∞

t
(Li1(xi) + Li2(ūi))dν, i = 1, 2, . . . , N. (81)

The Hamiltonian is defined as

Hi(xi, ūi,∇Vi) = ∇VT
i (fi(xi) + gi(xi)ūi(xi))

+ Li1(xi) + Li2(ūi), i = 1, 2, . . . , N. (82)

The optimal value function V∗
i satisfies

V∗
i = min

ūi
Vi, i = 1, 2, . . . , N. (83)

Then, the HJB equation is

min
ūi

Hi
(
xi, ūi,∇V∗

i

) = 0, i = 1, 2, . . . , N. (84)

Considering Li2(ūi) = ūT
i Riūi and stationarity conditions, the

optimal control policy for isolated subsystems becomes

ū∗
i = −1

2
R−1

i gT
i (xi)∇V∗

i , i = 1, 2, . . . , N. (85)

It was shown in [210] that decentralized control {ui}N
i=1 of

the interconnected system (78) can be obtained by increas-
ing the local feedback gain proportionally. Then, the online
PI algorithm was used to solve the HJB equation (84). As
an improvement, the model-free online IRL algorithm was
used to solve decentralized control problems of unknown
interconnected systems in [211].

If (79) is not satisfied, it becomes a more general unmatched
decentralized control problem [75], [212]–[216]. In [212], by
introducing a bounded function di(·) to modify the value
function, an unmatched interconnected large-scale system
with uncertainties was considered. For unknown unmatched
interconnected components, Zhao et al. [75] developed an
NN-based local observer, which relied on the local state of
isolated subsystems and the reference state of coupled sub-
systems. Therefore, the assumption of bounded or matched
interconnections in previous methods can be relaxed. Then, a
local value function with an adaptive estimation component
was designed to compensate for the substitution errors. The
problem considered in [213] was the same as that in [75].
However, it decomposes the interconnection terms in the
following form:

Īi(x) = gi(xi)g
+
i (xi)Īi(x) + (Ini − gi(xi)g

+
i (xi)

)
Īi(x). (86)

Based on (86), an auxiliary subsystem was designed. Then,
it transformed the solution of the decentralized controller for
the large-scale system into the optimal controller for the auxil-
iary subsystem. Compared with the learning structures of two
networks in [213], the method in [214] used one single critic
network, which simplified the network structure and did not
require initial admissible control.
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For complex large-scale systems, the higher the system
performance requirements, the greater the likelihood of system
failure in the actuator components. In order to improve
system reliability, safety, and survivability in complex envi-
ronments, fault diagnosis has been considered by scholars.
It needs to redesign the controller to recover the system
control performance as soon as possible. Therefore, fault-
tolerant control has become an important and meaningful
topic [217]–[219]. For the reconfigurable manipulator with
random actuator fault [217], an observer and an identifier were
established to detect and identify the fault, respectively, and
then the fault was compensated in real time. A decentralized
fault-tolerant control algorithm based on self-adjusting local
feedback gain was proposed in [218] to prevent partial loss
of actuator efficiency. Based on the work of Zhao et al. [75],
time-varying actuator faults were considered in [219], and the
developed algorithm assumed that these faults have known
upper bounds.

Decentralized tracking control is to design a control pol-
icy that allows the actual state to track the desired tra-
jectory [220]–[222]. The results are rare on interconnected
systems with unknown dynamics. Decentralized tracking con-
trol of matched and unmatched interconnected systems was
considered in [221] and [222], respectively. For the tracking
control problem of system (78) satisfying (79), the decentral-
ized control scheme was indirectly developed by solving the
HJB equation of N augmented tracking subsystems in [221],
and then a single network-based online ADP algorithm with-
out initial admissible control was developed. In [222], local
identifiers were used to identify dynamic models of unknown
subsystems. The identification error, the substitution error, and
the approximation error were compensated by an improved
local value function. This method ensured the tracking control
performance of the whole system. Composite learning algo-
rithms, such as wavelet NNs and fuzzy NNs, might improve
the tracking performance of large-scale nonlinear systems.

Differential games exist in many practical large-scale
systems. Moreover, the existence of external disturbances
may affect the stability of interconnected systems. Therefore,
the study of decentralized differential games is significant.
In [223], the ADP technique was first used to solve the
decentralized zero-sum differential games. A class of systems
studied was described by

ẋi = fi(xi) + gi(xi)(ui(xi) + I1i(x))

+ ki(xi)(di(xi) + I2i(x)), i = 1, 2, . . . , N. (87)

Inspired by [211], the interconnection terms are assumed to be
matched and bounded. It should be noted that this assumption
limits the applications of the algorithm. Presently, there is no
relevant research on other decentralized differential games.

When considering the communication of large-scale
systems, the event-triggered decentralized control was
developed by [116], [154], and [224]. Yang and He [154]
obtained the decentralized event-triggered control policy of
the whole system by means of a set of optimal event-triggered
control policies of the auxiliary subsystem. Then, an adaptive
critic learning scheme based on experience replay was used to
approximate the event-triggered HJB equation of the optimal

control problem. The decentralized tracking control problem
for modular reconfigurable robots was solved by Zhao and
Liu by using an event-triggered ADP method [224]. In addi-
tion, the event-triggered decentralized control for large-scale
systems with constrained input and external interference has
been studied in [116]. It is noted that further research is needed
for completely unknown large-scale practical systems.

Remark 7: For the decentralized control of nonlinear
discrete-time systems, affine interconnected systems were
studied in [225]. It employs the assumption of weak
interconnection to turn the solution of the optimal controller
of the overall system into solving the optimal controller of
each subsystem.

V. FUTURE PERSPECTIVES

Based on the above analysis, the following prospects for
future research are given.

1) Data-Based Learning Techniques: As human being’s
requirements for production and life gradually improve,
the system scale in real life becomes large scale.
Systems such as transportation systems, power systems,
telemedicine systems, chemical production systems, etc.,
collect a lot of data when they are running, but are dif-
ficult or cannot be described by accurate mathematical
models. Observer or identifier techniques are sometimes
difficult to implement in the face of these complex
large-scale systems. In the era of modern measuring
and computing equipments, the development of intel-
ligent learning methods based on the acquired perfect
or imperfect data has a broad development prospect.
Some literature, such as [73], [204], and [226]–[229],
has developed data-based techniques, but more atten-
tion should be paid to data-based learning techniques
for complex, volatile, large scale, and networked control
systems.

2) Learning Techniques Based on Event-Triggering and
Self-Triggering Mechanisms: It is urgent to reduce com-
munication traffic and computational burden for con-
trol systems with limited bandwidth. Event-triggered
and self-triggered learning mechanisms are emerged to
replace traditional time-triggering mechanisms to deal
with these problems [106], [116], [147], [183], [206],
[230]–[233]. These new mechanisms face new chal-
lenges, such as the design of the triggering mechanism
and the guarantee of stability and convergence of the
original systems. Therefore, more effective and skilled
techniques need to be explored.

3) Optimal Learning Techniques for Game Theory: Most of
the existing ADP methods achieve the mini-max target
of the value function. However, such a goal is sometimes
impractical. For example, in game theory, it attempts
to design an optimization policy to achieve a balanced
outcome for the benefits of multiple players [71], [191],
[198], [199], [228], [234], [235]. Therefore, the use of
ADP for tackling the actual game problem is promising,
which can promote the development of complex human-
engineered systems.
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4) Further Work for Deep RL/ADP: Deep RL/ADP com-
bines the perception of deep learning and the decision
making of RL/ADP, and it further extends RL/ADP to
problems that were previously difficult to solve [236].
This novel approach brings artificial intelligence closer
to the human mindset. Since it was proposed, deep
RL/ADP has made remarkable achievements in appli-
cations, such as Atari 2600 video games [237],
AlphaGo [238], robotics [239], [240], vehicle classifica-
tion [241], and elevator group control [242]. However,
the theoretical analysis of convergence and stability of
deep RL/ADP is still a problem to be solved. Therefore,
further research is needed to improve the framework of
the deep RL/ADP method.

5) New Ideas for Solving the HJB Equation: The main
focus of ADP is to solve the HJB equation and avoid
the curse of dimensionality, both in discrete-time and
continuous-time systems. In the past few decades, meth-
ods of direct solution and iterative solution have been
proposed to obtain the solution of the HJB equation, but
new ideas are still needed. There are some attempts in
the literature, especially for finite-horizon optimal con-
trol problems [243], [244]. This is a direction definitely
worth investigating by scholars in the future.

VI. CONCLUSION

In this article, a comprehensive overview of the ADP-based
intelligent control methods was given. First, the progress in
basic optimal control problems was introduced. Some widely
used learning algorithms were listed to show the progress.
Then, how this intelligent control method was used to solve
games and large-scale systems were analyzed, respectively.
After describing its applications in various aspects, it can be
seen that it has a good prospect in today’s era of artificial intel-
ligence. Some subsequent possible works are given to promote
the expected further advancement of the ADP-based intelligent
control methods.
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